Cargando…
Using Transfer Learning for Improved Mortality Prediction in a Data-Scarce Hospital Setting
Algorithm–based clinical decision support (CDS) systems associate patient-derived health data with outcomes of interest, such as in-hospital mortality. However, the quality of such associations often depends on the availability of site-specific training data. Without sufficient quantities of data, t...
Autores principales: | Desautels, Thomas, Calvert, Jacob, Hoffman, Jana, Mao, Qingqing, Jay, Melissa, Fletcher, Grant, Barton, Chris, Chettipally, Uli, Kerem, Yaniv, Das, Ritankar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5470861/ https://www.ncbi.nlm.nih.gov/pubmed/28638239 http://dx.doi.org/10.1177/1178222617712994 |
Ejemplares similares
-
High-performance detection and early prediction of septic shock for alcohol-use disorder patients
por: Calvert, Jacob, et al.
Publicado: (2016) -
Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU
por: Mao, Qingqing, et al.
Publicado: (2018) -
Using electronic health record collected clinical variables to predict medical intensive care unit mortality
por: Calvert, Jacob, et al.
Publicado: (2016) -
Prediction of Sepsis in the Intensive Care Unit With Minimal Electronic Health Record Data: A Machine Learning Approach
por: Desautels, Thomas, et al.
Publicado: (2016) -
Prediction of Acute Kidney Injury With a Machine Learning Algorithm
Using Electronic Health Record Data
por: Mohamadlou, Hamid, et al.
Publicado: (2018)