Cargando…

Development and Design of Next-Generation Head-Mounted Ambulatory Microdose Positron-Emission Tomography (AM-PET) System

Several applications exist for a whole brain positron-emission tomography (PET) brain imager designed as a portable unit that can be worn on a patient’s head. Enabled by improvements in detector technology, a lightweight, high performance device would allow PET brain imaging in different environment...

Descripción completa

Detalles Bibliográficos
Autores principales: Melroy, Samantha, Bauer, Christopher, McHugh, Matthew, Carden, Garret, Stolin, Alexander, Majewski, Stan, Brefczynski-Lewis, Julie, Wuest, Thorsten
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5470909/
https://www.ncbi.nlm.nih.gov/pubmed/28534848
http://dx.doi.org/10.3390/s17051164
Descripción
Sumario:Several applications exist for a whole brain positron-emission tomography (PET) brain imager designed as a portable unit that can be worn on a patient’s head. Enabled by improvements in detector technology, a lightweight, high performance device would allow PET brain imaging in different environments and during behavioral tasks. Such a wearable system that allows the subjects to move their heads and walk—the Ambulatory Microdose PET (AM-PET)—is currently under development. This imager will be helpful for testing subjects performing selected activities such as gestures, virtual reality activities and walking. The need for this type of lightweight mobile device has led to the construction of a proof of concept portable head-worn unit that uses twelve silicon photomultiplier (SiPM) PET module sensors built into a small ring which fits around the head. This paper is focused on the engineering design of mechanical support aspects of the AM-PET project, both of the current device as well as of the coming next-generation devices. The goal of this work is to optimize design of the scanner and its mechanics to improve comfort for the subject by reducing the effect of weight, and to enable diversification of its applications amongst different research activities.