Cargando…

DNA Backbone Sulfur-Modification Expands Microbial Growth Range under Multiple Stresses by its anti-oxidation function

DNA phosphorothioate (PT) modification is a sulfur modification on the backbone of DNA introduced by the proteins DndA-E. It has been detected within many bacteria isolates and metagenomic datasets, including human pathogens, and is considered to be widely distributed in nature. However, little is k...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Yan, Xu, Guanpeng, Liang, Jingdan, He, Ying, Xiong, Lei, Li, Hui, Bartlett, Douglas, Deng, Zixin, Wang, Zhijun, Xiao, Xiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5471199/
https://www.ncbi.nlm.nih.gov/pubmed/28615635
http://dx.doi.org/10.1038/s41598-017-02445-1
Descripción
Sumario:DNA phosphorothioate (PT) modification is a sulfur modification on the backbone of DNA introduced by the proteins DndA-E. It has been detected within many bacteria isolates and metagenomic datasets, including human pathogens, and is considered to be widely distributed in nature. However, little is known about the physiological function of this modification, and thus its evolutionary significance and application potential remains largely a mystery. In this study, we focused on the advantages of DNA PT modification to bacterial cells coping with environmental stresses. We show that the mesophile Escherichia coli and the extremophile Shewanella piezotolerans both expanded their growth ranges following exposure to extreme temperature, salinity, pH, pressure, UV, X-ray and heavy metals as a result of DNA phophorothioation. The phophorothioated DNA reacted to both H(2)O(2) and hydroxyl radicals in vivo, and protected genomic DNA as well as sensitive enzymes from intracellular oxidative damage. We further demonstrate that this process has evolved separate from its associated role in DNA restriction and modification. These findings provide a physiological role for a covalent modification widespread in nature and suggest possible applications in biotechnology and biomedicine.