Cargando…
Universal fractality of morphological transitions in stochastic growth processes
Stochastic growth processes give rise to diverse and intricate structures everywhere in nature, often referred to as fractals. In general, these complex structures reflect the non-trivial competition among the interactions that generate them. In particular, the paradigmatic Laplacian-growth model ex...
Autores principales: | Nicolás-Carlock, J. R., Carrillo-Estrada, J. L., Dossetti, V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5471257/ https://www.ncbi.nlm.nih.gov/pubmed/28615671 http://dx.doi.org/10.1038/s41598-017-03491-5 |
Ejemplares similares
-
Fractality à la carte: a general particle aggregation model
por: Nicolás-Carlock, J. R., et al.
Publicado: (2016) -
A universal dimensionality function for the fractal dimensions of Laplacian growth
por: Nicolás-Carlock, J. R., et al.
Publicado: (2019) -
Network efficiency of spatial systems with fractal morphology: a geometric graphs approach
por: Flores-Ortega, A. C., et al.
Publicado: (2023) -
Peculiarities and Applications of Stochastic Processes with Fractal Properties
por: Amosov, Oleg Semenovich, et al.
Publicado: (2021) -
Fractal geometry and stochastics
por: Bandt, Christoph, et al.
Publicado: (2004)