Cargando…
Associations between radiologist-defined semantic and automatically computed radiomic features in non-small cell lung cancer
Tumor phenotypes captured in computed tomography (CT) images can be described qualitatively and quantitatively using radiologist-defined “semantic” and computer-derived “radiomic” features, respectively. While both types of features have shown to be promising predictors of prognosis, the association...
Autores principales: | Yip, Stephen S. F., Liu, Ying, Parmar, Chintan, Li, Qian, Liu, Shichang, Qu, Fangyuan, Ye, Zhaoxiang, Gillies, Robert J., Aerts, Hugo J. W. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5471260/ https://www.ncbi.nlm.nih.gov/pubmed/28615677 http://dx.doi.org/10.1038/s41598-017-02425-5 |
Ejemplares similares
-
Explaining Deep Features Using Radiologist-Defined Semantic Features and Traditional Quantitative Features
por: Paul, Rahul, et al.
Publicado: (2019) -
Defining the biological basis of radiomic phenotypes in lung cancer
por: Grossmann, Patrick, et al.
Publicado: (2017) -
Radiographic prediction of meningioma grade by semantic and radiomic features
por: Coroller, Thibaud P., et al.
Publicado: (2017) -
Machine Learning methods for Quantitative Radiomic Biomarkers
por: Parmar, Chintan, et al.
Publicado: (2015) -
Robust Radiomics Feature Quantification Using Semiautomatic Volumetric Segmentation
por: Parmar, Chintan, et al.
Publicado: (2014)