Cargando…
MicroRNAs control mRNA fate by compartmentalization based on 3′ UTR length in male germ cells
BACKGROUND: Post-transcriptional regulation of gene expression can be achieved through the control of mRNA stability, cytoplasmic compartmentalization, 3′ UTR length and translational efficacy. Spermiogenesis, a process through which haploid male germ cells differentiate into spermatozoa, represents...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5471846/ https://www.ncbi.nlm.nih.gov/pubmed/28615029 http://dx.doi.org/10.1186/s13059-017-1243-x |
_version_ | 1783244027471069184 |
---|---|
author | Zhang, Ying Tang, Chong Yu, Tian Zhang, Ruirui Zheng, Huili Yan, Wei |
author_facet | Zhang, Ying Tang, Chong Yu, Tian Zhang, Ruirui Zheng, Huili Yan, Wei |
author_sort | Zhang, Ying |
collection | PubMed |
description | BACKGROUND: Post-transcriptional regulation of gene expression can be achieved through the control of mRNA stability, cytoplasmic compartmentalization, 3′ UTR length and translational efficacy. Spermiogenesis, a process through which haploid male germ cells differentiate into spermatozoa, represents an ideal model for studying post-transcriptional regulation in vivo because it involves a large number of transcripts that are physically sequestered in ribonucleoprotein particles (RNPs) and thus subjected to delayed translation. To explore how small RNAs regulate mRNA fate, we conducted RNA-Seq analyses to determine not only the levels of both mRNAs and small noncoding RNAs, but also their cytoplasmic compartmentalization during spermiogenesis. RESULT: Among all small noncoding RNAs studied, miRNAs displayed the most dynamic changes in both abundance and subcytoplasmic localization. mRNAs with shorter 3′ UTRs became increasingly enriched in RNPs from pachytene spermatocytes to round spermatids, and the enrichment of shorter 3′ UTR mRNAs in RNPs coincided with newly synthesized miRNAs that target these mRNAs at sites closer to the stop codon. In contrast, the translocation of longer 3′ UTR mRNAs from RNPs to polysomes correlated with the production of new miRNAs that target these mRNAs at sites distal to the stop codon. CONCLUSIONS: miRNAs appear to control cytoplasmic compartmentalization of mRNAs based on 3′ UTR length. Our data suggest that transcripts with longer 3′ UTRs tend to contain distal miRNA binding sites and are thus targeted to polysomes for translation followed by degradation. In contrast, those with shorter 3′ UTRs only possess proximal miRNA binding sites, which, therefore, are targeted into RNPs for enrichment and delayed translation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-017-1243-x) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5471846 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-54718462017-06-19 MicroRNAs control mRNA fate by compartmentalization based on 3′ UTR length in male germ cells Zhang, Ying Tang, Chong Yu, Tian Zhang, Ruirui Zheng, Huili Yan, Wei Genome Biol Research BACKGROUND: Post-transcriptional regulation of gene expression can be achieved through the control of mRNA stability, cytoplasmic compartmentalization, 3′ UTR length and translational efficacy. Spermiogenesis, a process through which haploid male germ cells differentiate into spermatozoa, represents an ideal model for studying post-transcriptional regulation in vivo because it involves a large number of transcripts that are physically sequestered in ribonucleoprotein particles (RNPs) and thus subjected to delayed translation. To explore how small RNAs regulate mRNA fate, we conducted RNA-Seq analyses to determine not only the levels of both mRNAs and small noncoding RNAs, but also their cytoplasmic compartmentalization during spermiogenesis. RESULT: Among all small noncoding RNAs studied, miRNAs displayed the most dynamic changes in both abundance and subcytoplasmic localization. mRNAs with shorter 3′ UTRs became increasingly enriched in RNPs from pachytene spermatocytes to round spermatids, and the enrichment of shorter 3′ UTR mRNAs in RNPs coincided with newly synthesized miRNAs that target these mRNAs at sites closer to the stop codon. In contrast, the translocation of longer 3′ UTR mRNAs from RNPs to polysomes correlated with the production of new miRNAs that target these mRNAs at sites distal to the stop codon. CONCLUSIONS: miRNAs appear to control cytoplasmic compartmentalization of mRNAs based on 3′ UTR length. Our data suggest that transcripts with longer 3′ UTRs tend to contain distal miRNA binding sites and are thus targeted to polysomes for translation followed by degradation. In contrast, those with shorter 3′ UTRs only possess proximal miRNA binding sites, which, therefore, are targeted into RNPs for enrichment and delayed translation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-017-1243-x) contains supplementary material, which is available to authorized users. BioMed Central 2017-06-15 /pmc/articles/PMC5471846/ /pubmed/28615029 http://dx.doi.org/10.1186/s13059-017-1243-x Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Zhang, Ying Tang, Chong Yu, Tian Zhang, Ruirui Zheng, Huili Yan, Wei MicroRNAs control mRNA fate by compartmentalization based on 3′ UTR length in male germ cells |
title | MicroRNAs control mRNA fate by compartmentalization based on 3′ UTR length in male germ cells |
title_full | MicroRNAs control mRNA fate by compartmentalization based on 3′ UTR length in male germ cells |
title_fullStr | MicroRNAs control mRNA fate by compartmentalization based on 3′ UTR length in male germ cells |
title_full_unstemmed | MicroRNAs control mRNA fate by compartmentalization based on 3′ UTR length in male germ cells |
title_short | MicroRNAs control mRNA fate by compartmentalization based on 3′ UTR length in male germ cells |
title_sort | micrornas control mrna fate by compartmentalization based on 3′ utr length in male germ cells |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5471846/ https://www.ncbi.nlm.nih.gov/pubmed/28615029 http://dx.doi.org/10.1186/s13059-017-1243-x |
work_keys_str_mv | AT zhangying micrornascontrolmrnafatebycompartmentalizationbasedon3utrlengthinmalegermcells AT tangchong micrornascontrolmrnafatebycompartmentalizationbasedon3utrlengthinmalegermcells AT yutian micrornascontrolmrnafatebycompartmentalizationbasedon3utrlengthinmalegermcells AT zhangruirui micrornascontrolmrnafatebycompartmentalizationbasedon3utrlengthinmalegermcells AT zhenghuili micrornascontrolmrnafatebycompartmentalizationbasedon3utrlengthinmalegermcells AT yanwei micrornascontrolmrnafatebycompartmentalizationbasedon3utrlengthinmalegermcells |