Cargando…

An N-nitrosation reactivity-based two-photon fluorescent probe for the specific in situ detection of nitric oxide

In situ fluorescence imaging of nitric oxide (NO) is a powerful tool for studying the critical roles of NO in biological events. However, the selective imaging of NO is still a challenge because most currently available fluorescent probes rely on the o-phenylenediamine (OPD) recognition site, which...

Descripción completa

Detalles Bibliográficos
Autores principales: Mao, Zhiqiang, Jiang, Hong, Li, Zhen, Zhong, Cheng, Zhang, Wei, Liu, Zhihong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472031/
https://www.ncbi.nlm.nih.gov/pubmed/28660066
http://dx.doi.org/10.1039/c7sc00416h
Descripción
Sumario:In situ fluorescence imaging of nitric oxide (NO) is a powerful tool for studying the critical roles of NO in biological events. However, the selective imaging of NO is still a challenge because most currently available fluorescent probes rely on the o-phenylenediamine (OPD) recognition site, which reacts with both NO and some abundant reactive carbonyl species (RCS) (such as dehydroascorbic acid and methylglyoxal) and some reactive oxygen/nitrogen species (ROS/RNS). To address this problem, a new fluorescent probe, NCNO, based on the N-nitrosation of aromatic secondary amine was designed to bypass the RCS, ROS, and RNS interference. As was expected, the probe NCNO could recognize NO with pronounced selectivity and sensitivity among ROS, RNS, and RCS. The probe was validated by detecting NO in live cells and deep tissues owing to its two-photon excitation and red-light emission. It was, hence, applied to monitor NO in ischemia reperfusion injury (IRI) in mice kidneys by two-photon microscopy for the first time, and the results vividly revealed the profile of NO generation in situ during the renal IRI process.