Cargando…

Mice deleted for cell division cycle 73 gene develop parathyroid and uterine tumours: model for the hyperparathyroidism-jaw tumour syndrome

The hyperparathyroidism-jaw tumour (HPT-JT) syndrome is an autosomal dominant disorder characterized by occurrence of parathyroid tumours, often atypical adenomas and carcinomas, ossifying jaw fibromas, renal tumours and uterine benign and malignant neoplasms. HPT-JT is caused by mutations of the ce...

Descripción completa

Detalles Bibliográficos
Autores principales: Walls, G V, Stevenson, M, Lines, K E, Newey, P J, Reed, A A C, Bowl, M R, Jeyabalan, J, Harding, B, Bradley, K J, Manek, S, Chen, J, Wang, P, Williams, B O, Teh, B T, Thakker, R V
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472200/
https://www.ncbi.nlm.nih.gov/pubmed/28288139
http://dx.doi.org/10.1038/onc.2017.43
Descripción
Sumario:The hyperparathyroidism-jaw tumour (HPT-JT) syndrome is an autosomal dominant disorder characterized by occurrence of parathyroid tumours, often atypical adenomas and carcinomas, ossifying jaw fibromas, renal tumours and uterine benign and malignant neoplasms. HPT-JT is caused by mutations of the cell division cycle 73 (CDC73) gene, located on chromosome 1q31.2 and encodes a 531 amino acid protein, parafibromin. To facilitate in vivo studies of Cdc73 in tumourigenesis we generated conventional (Cdc73(+/−)) and conditional parathyroid-specific (Cdc73(+/L)/PTH-Cre and Cdc73(L/L)/PTH-Cre) mouse models. Mice were aged to 18-21 months and studied for survival, tumour development and proliferation, and serum biochemistry, and compared to age-matched wild-type (Cdc73(+/+) and Cdc73(+/+)/PTH-Cre) littermates. Survival of Cdc73(+/−) mice, when compared to Cdc73(+/+) mice was reduced (Cdc73(+/−)=80% Cdc73(+/+)=90% at 18 months of age, P<0.05). Cdc73(+/−), Cdc73(+/L)/PTH-Cre and Cdc73(L/L)/PTH-Cre mice developed parathyroid tumours, which had nuclear pleomorphism, fibrous septation and increased galectin-3 expression, consistent with atypical parathyroid adenomas, from 9 months of age. Parathyroid tumours in Cdc73(+/−), Cdc73(+/L)/PTH-Cre and Cdc73(L/L)/PTH-Cre mice had significantly increased proliferation, with rates >fourfold higher than that in parathyroid glands of wild-type littermates (P<0.0001). Cdc73(+/−), Cdc73(+/L)/PTH-Cre and Cdc73(L/L)/PTH-Cre mice had higher mean serum calcium concentrations than wild-type littermates, and Cdc73(+/−) mice also had increased mean serum parathyroid hormone (PTH) concentrations. Parathyroid tumour development, and elevations in serum calcium and PTH, were similar in males and females. Cdc73(+/−) mice did not develop bone or renal tumours but female Cdc73(+/−) mice, at 18 months of age, had uterine neoplasms comprising squamous metaplasia, adenofibroma and adenomyoma. Uterine neoplasms, myometria and jaw bones of Cdc73(+/−) mice had increased proliferation rates that were 2-fold higher than in Cdc73(+/+) mice (P<0.05). Thus, our studies, which have established mouse models for parathyroid tumours and uterine neoplasms that develop in the HPT-JT syndrome, provide in vivo models for future studies of these tumours.