Cargando…

CF2 transcription factor is involved in the regulation of Mef2 RNA levels, nuclei number and muscle fiber size

CF2 and Mef2 influence a variety of developmental muscle processes at distinct stages of development. Nevertheless, the exact nature of the CF2-Mef2 relationship and its effects on muscle building remain yet to be resolved. Here, we explored the regulatory role of CF2 in the Drosophila embryo muscle...

Descripción completa

Detalles Bibliográficos
Autores principales: Arredondo, Juan J., Vivar, Jorge, Laine-Menéndez, Sara, Martínez-Morentin, Leticia, Cervera, Margarita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472297/
https://www.ncbi.nlm.nih.gov/pubmed/28617826
http://dx.doi.org/10.1371/journal.pone.0179194
Descripción
Sumario:CF2 and Mef2 influence a variety of developmental muscle processes at distinct stages of development. Nevertheless, the exact nature of the CF2-Mef2 relationship and its effects on muscle building remain yet to be resolved. Here, we explored the regulatory role of CF2 in the Drosophila embryo muscle formation. To address this question and not having proper null CF2 mutants we exploited loss or gain of function strategies to study the contribution of CF2 to Mef2 transcription regulation and to muscle formation. Our data point to CF2 as a factor involved in the regulation of muscle final size and/or the number of nuclei present in each muscle. This function is independent of its role as a Mef2 collaborative factor in the transcriptional regulation of muscle-structural genes. Although Mef2 expression patterns do not change, reductions or increases in parallel in CF2 and Mef2 transcript abundance were observed in interfered and overexpressed CF2 embryos. Since CF2 expression variations yield altered Mef2 expression levels but with correct spatio-temporal Mef2 expression patterns, it can be concluded that only the mechanism controlling expression levels is de-regulated. Here, it is proposed that CF2 regulates Mef2 expression through a Feedforward Loop circuit.