Cargando…

Crosstalk within a functional INO80 complex dimer regulates nucleosome sliding

Several chromatin remodellers have the ability to space nucleosomes on DNA. For ISWI remodellers, this involves an interplay between H4 histone tails, the AutoN and NegC motifs of the motor domains that together regulate ATPase activity and sense the length of DNA flanking the nucleosome. By contras...

Descripción completa

Detalles Bibliográficos
Autores principales: Willhoft, Oliver, McCormack, Elizabeth A, Aramayo, Ricardo J, Bythell-Douglas, Rohan, Ocloo, Lorraine, Zhang, Xiaodong, Wigley, Dale B
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472440/
https://www.ncbi.nlm.nih.gov/pubmed/28585918
http://dx.doi.org/10.7554/eLife.25782
Descripción
Sumario:Several chromatin remodellers have the ability to space nucleosomes on DNA. For ISWI remodellers, this involves an interplay between H4 histone tails, the AutoN and NegC motifs of the motor domains that together regulate ATPase activity and sense the length of DNA flanking the nucleosome. By contrast, the INO80 complex also spaces nucleosomes but is not regulated by H4 tails and lacks the AutoN and NegC motifs. Instead nucleosome sliding requires cooperativity between two INO80 complexes that monitor DNA length simultaneously on either side of the nucleosome during sliding. The C-terminal domain of the human Ino80 subunit (Ino80CTD) binds cooperatively to DNA and dimerisation of these domains provides crosstalk between complexes. ATPase activity, rather than being regulated, instead gradually becomes uncoupled as nucleosome sliding reaches an end point and this is controlled by the Ino80CTD. A single active ATPase motor within the dimer is sufficient for sliding. DOI: http://dx.doi.org/10.7554/eLife.25782.001