Cargando…
Amelioration of arsenic-induced toxic effects in mice by dietary supplementation of Syzygium cumini leaf extract
Arsenic created a serious public health problem in Bangladesh due to its presence in groundwater and dissemination of the toxic effects to millions of people. The scarcity of the treatment options to manage this affected population has made the situation much worse. To find a promising treatment opt...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nagoya University
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472542/ https://www.ncbi.nlm.nih.gov/pubmed/28626252 http://dx.doi.org/10.18999/nagjms.79.2.167 |
Sumario: | Arsenic created a serious public health problem in Bangladesh due to its presence in groundwater and dissemination of the toxic effects to millions of people. The scarcity of the treatment options to manage this affected population has made the situation much worse. To find a promising treatment option, this study was undertaken to examine the ameliorating roles of Syzygium cumini leaf extract (SLE) against arsenic-induced toxic effects in mice. Swiss albino mice were divided into four groups where ‘control’ group received pure water + normal feed, ‘arsenic (As)’ group received sodium arsenite (NaAsO(2))-containing water (10 μg/g body weight/day) + normal feed, ‘As+SLE’ group received NaAsO(2)-containing water + feed supplemented with SLE (50 µg/g body weight/day) and finally the ‘SLE’ group received pure water + feed supplemented with SLE. A gradual increase in body weight gain was observed in control mice; however, the body weight gain in As-exposed mice was decreased. This decrease in body weight gain was prevented in As+SLE group mice that received SLE supplemented feed. Arsenic showed a secondary effect by causing enlargement of spleen, kidney and liver of ‘As’ group mice and this enlargement of the organs was minimized with SLE supplementation. In addition, SLE abrogated arsenic-mediated elevation of serum alkaline phosphatase (ALP), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), uric acid and glucose. These results, therefore, suggest that SLE might have future therapeutic value for preventing or reducing arsenic-induced toxic effects. |
---|