Cargando…
Predicting the outcomes of organic reactions via machine learning: are current descriptors sufficient?
As machine learning/artificial intelligence algorithms are defeating chess masters and, most recently, GO champions, there is interest – and hope – that they will prove equally useful in assisting chemists in predicting outcomes of organic reactions. This paper demonstrates, however, that the applic...
Autores principales: | Skoraczyński, G., Dittwald, P., Miasojedow, B., Szymkuć, S., Gajewska, E. P., Grzybowski, B. A., Gambin, A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472585/ https://www.ncbi.nlm.nih.gov/pubmed/28620199 http://dx.doi.org/10.1038/s41598-017-02303-0 |
Ejemplares similares
-
Alignstein: Optimal transport for improved LC-MS retention time alignment
por: Skoraczyński, Grzegorz, et al.
Publicado: (2022) -
Critical assessment of synthetic accessibility scores in computer-assisted synthesis planning
por: Skoraczyński, Grzegorz, et al.
Publicado: (2023) -
Computer-generated “synthetic contingency” plans at times of logistics and supply problems: scenarios for hydroxychloroquine and remdesivir
por: Szymkuć, Sara, et al.
Publicado: (2020) -
Automatic mapping of atoms across both simple and complex chemical reactions
por: Jaworski, Wojciech, et al.
Publicado: (2019) -
Chemistry-informed molecular graph as reaction descriptor for machine-learned retrosynthesis planning
por: Zhang, Baicheng, et al.
Publicado: (2022)