Cargando…
More Is Better: Recent Progress in Multi-Omics Data Integration Methods
Multi-omics data integration is one of the major challenges in the era of precision medicine. Considerable work has been done with the advent of high-throughput studies, which have enabled the data access for downstream analyses. To improve the clinical outcome prediction, a gamut of software tools...
Autores principales: | Huang, Sijia, Chaudhary, Kumardeep, Garmire, Lana X. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472696/ https://www.ncbi.nlm.nih.gov/pubmed/28670325 http://dx.doi.org/10.3389/fgene.2017.00084 |
Ejemplares similares
-
DeepProg: an ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data
por: Poirion, Olivier B., et al.
Publicado: (2021) -
Deep Learning data integration for better risk stratification models of bladder cancer
por: Poirion, Olivier B., et al.
Publicado: (2018) -
Computational Methods for Single-cell Multi-omics Integration and Alignment
por: Stanojevic, Stefan, et al.
Publicado: (2022) -
Deep Learning
Accurately Predicts Estrogen Receptor
Status in Breast Cancer Metabolomics Data
por: Alakwaa, Fadhl M., et al.
Publicado: (2017) -
Unsupervised Multi-Omics Data Integration Methods: A Comprehensive Review
por: Vahabi, Nasim, et al.
Publicado: (2022)