Cargando…
Treatment of thoracolumbar burst fractures by short-segment pedicle screw fixation using a combination of two additional pedicle screws and vertebroplasty at the level of the fracture: a finite element analysis
BACKGROUND: Traditional one-above and one-below four-screw posterior short-segment instrumentation is used for unstable thoracolumbar burst fractures. However, this method has a high rate of implant failure and early loss of reduction. The purpose of this study was to use finite element (FE) analysi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472982/ https://www.ncbi.nlm.nih.gov/pubmed/28619021 http://dx.doi.org/10.1186/s12891-017-1623-0 |
_version_ | 1783244222139203584 |
---|---|
author | Liao, Jen-Chung Chen, Weng-Pin Wang, Hao |
author_facet | Liao, Jen-Chung Chen, Weng-Pin Wang, Hao |
author_sort | Liao, Jen-Chung |
collection | PubMed |
description | BACKGROUND: Traditional one-above and one-below four-screw posterior short-segment instrumentation is used for unstable thoracolumbar burst fractures. However, this method has a high rate of implant failure and early loss of reduction. The purpose of this study was to use finite element (FE) analysis to determine the effect of treating thoracolumbar burst fractures by short-segment pedicle screw fixation using a combination of two additional pedicle screws and vertebroplasty at the level of the fracture. METHODS: An intact T11-L1 spine FE model was created from the computed tomography images of a male subject. Four fixation models with posterior fusion devices (pedicle screws, rods, cross-link) were established to simulate an unstable thoracolumbar fracture with different fusion surgeries: short-segment fixation with: 1) a link (S-L); 2) intermediate bilateral screws (S-I); 3) a link and calcium sulfate cement (S-L-C); 4) intermediate bilateral screws and calcium sulfate cement (S-I-C). Different loading conditions (flexion, extension, lateral bending, and axial rotation) were applied on the models and analyzed with a FE package. The range of motion (ROM), and the maximum value and distribution of the implant stress, and the stress in the facet joint, were compared between the intact and fixation models. RESULTS: The ROM in flexion, extension, axial rotation, and lateral bending was the smallest in the S-I-C model, followed by the S-I, S-L-C, and S-L models. Maximum von Mises stress values were larger under lateral bending and axial rotation loadings than under flexion and extension loading. High stress was concentrated at the crosslink and rod junctions. Maximal von Mises stress on the superior vertebral body for all loading conditions was larger than that on the inferior vertebral body. The maximal von Mises stress of the pedicle screws during all states of motion were 265.3 MPa in S-L fixation, 192.9 MPa in S-I fixation, 258.4 MPa in S-L-C fixation, and 162.3 MPa in S-I-C fixation. CONCLUSIONS: Short-segment fixation with two intermediate pedicle screws together with calcium sulfate cement at the fractured vertebrae may provide a stiffer construct and less von Mises stress of the pedicle screws and rods as compared to other types of short-segment fixation. |
format | Online Article Text |
id | pubmed-5472982 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-54729822017-06-21 Treatment of thoracolumbar burst fractures by short-segment pedicle screw fixation using a combination of two additional pedicle screws and vertebroplasty at the level of the fracture: a finite element analysis Liao, Jen-Chung Chen, Weng-Pin Wang, Hao BMC Musculoskelet Disord Research Article BACKGROUND: Traditional one-above and one-below four-screw posterior short-segment instrumentation is used for unstable thoracolumbar burst fractures. However, this method has a high rate of implant failure and early loss of reduction. The purpose of this study was to use finite element (FE) analysis to determine the effect of treating thoracolumbar burst fractures by short-segment pedicle screw fixation using a combination of two additional pedicle screws and vertebroplasty at the level of the fracture. METHODS: An intact T11-L1 spine FE model was created from the computed tomography images of a male subject. Four fixation models with posterior fusion devices (pedicle screws, rods, cross-link) were established to simulate an unstable thoracolumbar fracture with different fusion surgeries: short-segment fixation with: 1) a link (S-L); 2) intermediate bilateral screws (S-I); 3) a link and calcium sulfate cement (S-L-C); 4) intermediate bilateral screws and calcium sulfate cement (S-I-C). Different loading conditions (flexion, extension, lateral bending, and axial rotation) were applied on the models and analyzed with a FE package. The range of motion (ROM), and the maximum value and distribution of the implant stress, and the stress in the facet joint, were compared between the intact and fixation models. RESULTS: The ROM in flexion, extension, axial rotation, and lateral bending was the smallest in the S-I-C model, followed by the S-I, S-L-C, and S-L models. Maximum von Mises stress values were larger under lateral bending and axial rotation loadings than under flexion and extension loading. High stress was concentrated at the crosslink and rod junctions. Maximal von Mises stress on the superior vertebral body for all loading conditions was larger than that on the inferior vertebral body. The maximal von Mises stress of the pedicle screws during all states of motion were 265.3 MPa in S-L fixation, 192.9 MPa in S-I fixation, 258.4 MPa in S-L-C fixation, and 162.3 MPa in S-I-C fixation. CONCLUSIONS: Short-segment fixation with two intermediate pedicle screws together with calcium sulfate cement at the fractured vertebrae may provide a stiffer construct and less von Mises stress of the pedicle screws and rods as compared to other types of short-segment fixation. BioMed Central 2017-06-15 /pmc/articles/PMC5472982/ /pubmed/28619021 http://dx.doi.org/10.1186/s12891-017-1623-0 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Liao, Jen-Chung Chen, Weng-Pin Wang, Hao Treatment of thoracolumbar burst fractures by short-segment pedicle screw fixation using a combination of two additional pedicle screws and vertebroplasty at the level of the fracture: a finite element analysis |
title | Treatment of thoracolumbar burst fractures by short-segment pedicle screw fixation using a combination of two additional pedicle screws and vertebroplasty at the level of the fracture: a finite element analysis |
title_full | Treatment of thoracolumbar burst fractures by short-segment pedicle screw fixation using a combination of two additional pedicle screws and vertebroplasty at the level of the fracture: a finite element analysis |
title_fullStr | Treatment of thoracolumbar burst fractures by short-segment pedicle screw fixation using a combination of two additional pedicle screws and vertebroplasty at the level of the fracture: a finite element analysis |
title_full_unstemmed | Treatment of thoracolumbar burst fractures by short-segment pedicle screw fixation using a combination of two additional pedicle screws and vertebroplasty at the level of the fracture: a finite element analysis |
title_short | Treatment of thoracolumbar burst fractures by short-segment pedicle screw fixation using a combination of two additional pedicle screws and vertebroplasty at the level of the fracture: a finite element analysis |
title_sort | treatment of thoracolumbar burst fractures by short-segment pedicle screw fixation using a combination of two additional pedicle screws and vertebroplasty at the level of the fracture: a finite element analysis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472982/ https://www.ncbi.nlm.nih.gov/pubmed/28619021 http://dx.doi.org/10.1186/s12891-017-1623-0 |
work_keys_str_mv | AT liaojenchung treatmentofthoracolumbarburstfracturesbyshortsegmentpediclescrewfixationusingacombinationoftwoadditionalpediclescrewsandvertebroplastyatthelevelofthefractureafiniteelementanalysis AT chenwengpin treatmentofthoracolumbarburstfracturesbyshortsegmentpediclescrewfixationusingacombinationoftwoadditionalpediclescrewsandvertebroplastyatthelevelofthefractureafiniteelementanalysis AT wanghao treatmentofthoracolumbarburstfracturesbyshortsegmentpediclescrewfixationusingacombinationoftwoadditionalpediclescrewsandvertebroplastyatthelevelofthefractureafiniteelementanalysis |