Cargando…

Time Course of Metabolic Capacities in Paralarvae of the Common Octopus, Octopus vulgaris, in the First Stages of Life. Searching Biomarkers of Nutritional Imbalance

The culture of the common octopus (Octopus vulgaris) is promising since the species has a relatively short lifecycle, rapid growth, and high food conversion ratios. However, recent attempts at successful paralarvae culture have failed due to slow growth and high mortality rates. Establishing an opti...

Descripción completa

Detalles Bibliográficos
Autores principales: Morales, Amalia E., Cardenete, Gabriel, Hidalgo, M. Carmen, Garrido, Diego, Martín, M. Virginia, Almansa, Eduardo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473251/
https://www.ncbi.nlm.nih.gov/pubmed/28670288
http://dx.doi.org/10.3389/fphys.2017.00427
_version_ 1783244261074927616
author Morales, Amalia E.
Cardenete, Gabriel
Hidalgo, M. Carmen
Garrido, Diego
Martín, M. Virginia
Almansa, Eduardo
author_facet Morales, Amalia E.
Cardenete, Gabriel
Hidalgo, M. Carmen
Garrido, Diego
Martín, M. Virginia
Almansa, Eduardo
author_sort Morales, Amalia E.
collection PubMed
description The culture of the common octopus (Octopus vulgaris) is promising since the species has a relatively short lifecycle, rapid growth, and high food conversion ratios. However, recent attempts at successful paralarvae culture have failed due to slow growth and high mortality rates. Establishing an optimal nutritional regime for the paralarvae seems to be the impeding step in successful culture methods. Gaining a thorough knowledge of food regulation and assimilation is essential for paralarvae survival and longevity under culture conditions. The aim of this study, then, was to elucidate the characteristic metabolic organization of octopus paralarvae throughout an ontogenic period of 12 days post-hatching, as well as assess the effect of diet enrichment with live prey containing abundant marine phospholipids. Our results showed that throughout the ontogenic period studied, an increase in anaerobic metabolism took place largely due to an increased dependence of paralarvae on exogenous food. Our studies showed that this activity was supported by octopine dehydrogenase activity, with a less significant contribution of lactate dehydrogenase activity. Regarding aerobic metabolism, the use of amino acids was maintained for the duration of the experiment. Our studies also showed a significant increase in the rate of oxidation of fatty acids from 6 days after-hatching. A low, although sustained, capacity for de novo synthesis of glucose from amino acids and glycerol was also observed. Regardless of the composition of the food, glycerol kinase activity significantly increased a few days prior to a massive mortality event. This could be related to a metabolic imbalance in the redox state responsible for the high mortality. Thus, glycerol kinase might be used as an effective nutritional and welfare biomarker. The studies in this report also revealed the important finding that feeding larvae with phospholipid-enriched Artemia improved animal viability and welfare, significantly increasing the rate of survival and growth of paralarvae.
format Online
Article
Text
id pubmed-5473251
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-54732512017-06-30 Time Course of Metabolic Capacities in Paralarvae of the Common Octopus, Octopus vulgaris, in the First Stages of Life. Searching Biomarkers of Nutritional Imbalance Morales, Amalia E. Cardenete, Gabriel Hidalgo, M. Carmen Garrido, Diego Martín, M. Virginia Almansa, Eduardo Front Physiol Physiology The culture of the common octopus (Octopus vulgaris) is promising since the species has a relatively short lifecycle, rapid growth, and high food conversion ratios. However, recent attempts at successful paralarvae culture have failed due to slow growth and high mortality rates. Establishing an optimal nutritional regime for the paralarvae seems to be the impeding step in successful culture methods. Gaining a thorough knowledge of food regulation and assimilation is essential for paralarvae survival and longevity under culture conditions. The aim of this study, then, was to elucidate the characteristic metabolic organization of octopus paralarvae throughout an ontogenic period of 12 days post-hatching, as well as assess the effect of diet enrichment with live prey containing abundant marine phospholipids. Our results showed that throughout the ontogenic period studied, an increase in anaerobic metabolism took place largely due to an increased dependence of paralarvae on exogenous food. Our studies showed that this activity was supported by octopine dehydrogenase activity, with a less significant contribution of lactate dehydrogenase activity. Regarding aerobic metabolism, the use of amino acids was maintained for the duration of the experiment. Our studies also showed a significant increase in the rate of oxidation of fatty acids from 6 days after-hatching. A low, although sustained, capacity for de novo synthesis of glucose from amino acids and glycerol was also observed. Regardless of the composition of the food, glycerol kinase activity significantly increased a few days prior to a massive mortality event. This could be related to a metabolic imbalance in the redox state responsible for the high mortality. Thus, glycerol kinase might be used as an effective nutritional and welfare biomarker. The studies in this report also revealed the important finding that feeding larvae with phospholipid-enriched Artemia improved animal viability and welfare, significantly increasing the rate of survival and growth of paralarvae. Frontiers Media S.A. 2017-06-16 /pmc/articles/PMC5473251/ /pubmed/28670288 http://dx.doi.org/10.3389/fphys.2017.00427 Text en Copyright © 2017 Morales, Cardenete, Hidalgo, Garrido, Martín and Almansa. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Physiology
Morales, Amalia E.
Cardenete, Gabriel
Hidalgo, M. Carmen
Garrido, Diego
Martín, M. Virginia
Almansa, Eduardo
Time Course of Metabolic Capacities in Paralarvae of the Common Octopus, Octopus vulgaris, in the First Stages of Life. Searching Biomarkers of Nutritional Imbalance
title Time Course of Metabolic Capacities in Paralarvae of the Common Octopus, Octopus vulgaris, in the First Stages of Life. Searching Biomarkers of Nutritional Imbalance
title_full Time Course of Metabolic Capacities in Paralarvae of the Common Octopus, Octopus vulgaris, in the First Stages of Life. Searching Biomarkers of Nutritional Imbalance
title_fullStr Time Course of Metabolic Capacities in Paralarvae of the Common Octopus, Octopus vulgaris, in the First Stages of Life. Searching Biomarkers of Nutritional Imbalance
title_full_unstemmed Time Course of Metabolic Capacities in Paralarvae of the Common Octopus, Octopus vulgaris, in the First Stages of Life. Searching Biomarkers of Nutritional Imbalance
title_short Time Course of Metabolic Capacities in Paralarvae of the Common Octopus, Octopus vulgaris, in the First Stages of Life. Searching Biomarkers of Nutritional Imbalance
title_sort time course of metabolic capacities in paralarvae of the common octopus, octopus vulgaris, in the first stages of life. searching biomarkers of nutritional imbalance
topic Physiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473251/
https://www.ncbi.nlm.nih.gov/pubmed/28670288
http://dx.doi.org/10.3389/fphys.2017.00427
work_keys_str_mv AT moralesamaliae timecourseofmetaboliccapacitiesinparalarvaeofthecommonoctopusoctopusvulgarisinthefirststagesoflifesearchingbiomarkersofnutritionalimbalance
AT cardenetegabriel timecourseofmetaboliccapacitiesinparalarvaeofthecommonoctopusoctopusvulgarisinthefirststagesoflifesearchingbiomarkersofnutritionalimbalance
AT hidalgomcarmen timecourseofmetaboliccapacitiesinparalarvaeofthecommonoctopusoctopusvulgarisinthefirststagesoflifesearchingbiomarkersofnutritionalimbalance
AT garridodiego timecourseofmetaboliccapacitiesinparalarvaeofthecommonoctopusoctopusvulgarisinthefirststagesoflifesearchingbiomarkersofnutritionalimbalance
AT martinmvirginia timecourseofmetaboliccapacitiesinparalarvaeofthecommonoctopusoctopusvulgarisinthefirststagesoflifesearchingbiomarkersofnutritionalimbalance
AT almansaeduardo timecourseofmetaboliccapacitiesinparalarvaeofthecommonoctopusoctopusvulgarisinthefirststagesoflifesearchingbiomarkersofnutritionalimbalance