Cargando…
Luminescent hyperbolic metasurfaces
When engineered on scales much smaller than the operating wavelength, metal-semiconductor nanostructures exhibit properties unobtainable in nature. Namely, a uniaxial optical metamaterial described by a hyperbolic dispersion relation can simultaneously behave as a reflective metal and an absorptive...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473634/ https://www.ncbi.nlm.nih.gov/pubmed/28067219 http://dx.doi.org/10.1038/ncomms13793 |
_version_ | 1783244321158332416 |
---|---|
author | Smalley, J. S. T. Vallini, F. Montoya, S. A. Ferrari, L. Shahin, S. Riley, C. T. Kanté, B. Fullerton, E. E. Liu, Z. Fainman, Y. |
author_facet | Smalley, J. S. T. Vallini, F. Montoya, S. A. Ferrari, L. Shahin, S. Riley, C. T. Kanté, B. Fullerton, E. E. Liu, Z. Fainman, Y. |
author_sort | Smalley, J. S. T. |
collection | PubMed |
description | When engineered on scales much smaller than the operating wavelength, metal-semiconductor nanostructures exhibit properties unobtainable in nature. Namely, a uniaxial optical metamaterial described by a hyperbolic dispersion relation can simultaneously behave as a reflective metal and an absorptive or emissive semiconductor for electromagnetic waves with orthogonal linear polarization states. Using an unconventional multilayer architecture, we demonstrate luminescent hyperbolic metasurfaces, wherein distributed semiconducting quantum wells display extreme absorption and emission polarization anisotropy. Through normally incident micro-photoluminescence measurements, we observe absorption anisotropies greater than a factor of 10 and degree-of-linear polarization of emission >0.9. We observe the modification of emission spectra and, by incorporating wavelength-scale gratings, show a controlled reduction of polarization anisotropy. We verify hyperbolic dispersion with numerical simulations that model the metasurface as a composite nanoscale structure and according to the effective medium approximation. Finally, we experimentally demonstrate >350% emission intensity enhancement relative to the bare semiconducting quantum wells. |
format | Online Article Text |
id | pubmed-5473634 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-54736342017-06-28 Luminescent hyperbolic metasurfaces Smalley, J. S. T. Vallini, F. Montoya, S. A. Ferrari, L. Shahin, S. Riley, C. T. Kanté, B. Fullerton, E. E. Liu, Z. Fainman, Y. Nat Commun Article When engineered on scales much smaller than the operating wavelength, metal-semiconductor nanostructures exhibit properties unobtainable in nature. Namely, a uniaxial optical metamaterial described by a hyperbolic dispersion relation can simultaneously behave as a reflective metal and an absorptive or emissive semiconductor for electromagnetic waves with orthogonal linear polarization states. Using an unconventional multilayer architecture, we demonstrate luminescent hyperbolic metasurfaces, wherein distributed semiconducting quantum wells display extreme absorption and emission polarization anisotropy. Through normally incident micro-photoluminescence measurements, we observe absorption anisotropies greater than a factor of 10 and degree-of-linear polarization of emission >0.9. We observe the modification of emission spectra and, by incorporating wavelength-scale gratings, show a controlled reduction of polarization anisotropy. We verify hyperbolic dispersion with numerical simulations that model the metasurface as a composite nanoscale structure and according to the effective medium approximation. Finally, we experimentally demonstrate >350% emission intensity enhancement relative to the bare semiconducting quantum wells. Nature Publishing Group 2017-01-09 /pmc/articles/PMC5473634/ /pubmed/28067219 http://dx.doi.org/10.1038/ncomms13793 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Smalley, J. S. T. Vallini, F. Montoya, S. A. Ferrari, L. Shahin, S. Riley, C. T. Kanté, B. Fullerton, E. E. Liu, Z. Fainman, Y. Luminescent hyperbolic metasurfaces |
title | Luminescent hyperbolic metasurfaces |
title_full | Luminescent hyperbolic metasurfaces |
title_fullStr | Luminescent hyperbolic metasurfaces |
title_full_unstemmed | Luminescent hyperbolic metasurfaces |
title_short | Luminescent hyperbolic metasurfaces |
title_sort | luminescent hyperbolic metasurfaces |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473634/ https://www.ncbi.nlm.nih.gov/pubmed/28067219 http://dx.doi.org/10.1038/ncomms13793 |
work_keys_str_mv | AT smalleyjst luminescenthyperbolicmetasurfaces AT vallinif luminescenthyperbolicmetasurfaces AT montoyasa luminescenthyperbolicmetasurfaces AT ferraril luminescenthyperbolicmetasurfaces AT shahins luminescenthyperbolicmetasurfaces AT rileyct luminescenthyperbolicmetasurfaces AT kanteb luminescenthyperbolicmetasurfaces AT fullertonee luminescenthyperbolicmetasurfaces AT liuz luminescenthyperbolicmetasurfaces AT fainmany luminescenthyperbolicmetasurfaces |