Cargando…

Luminescent hyperbolic metasurfaces

When engineered on scales much smaller than the operating wavelength, metal-semiconductor nanostructures exhibit properties unobtainable in nature. Namely, a uniaxial optical metamaterial described by a hyperbolic dispersion relation can simultaneously behave as a reflective metal and an absorptive...

Descripción completa

Detalles Bibliográficos
Autores principales: Smalley, J. S. T., Vallini, F., Montoya, S. A., Ferrari, L., Shahin, S., Riley, C. T., Kanté, B., Fullerton, E. E., Liu, Z., Fainman, Y.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473634/
https://www.ncbi.nlm.nih.gov/pubmed/28067219
http://dx.doi.org/10.1038/ncomms13793
_version_ 1783244321158332416
author Smalley, J. S. T.
Vallini, F.
Montoya, S. A.
Ferrari, L.
Shahin, S.
Riley, C. T.
Kanté, B.
Fullerton, E. E.
Liu, Z.
Fainman, Y.
author_facet Smalley, J. S. T.
Vallini, F.
Montoya, S. A.
Ferrari, L.
Shahin, S.
Riley, C. T.
Kanté, B.
Fullerton, E. E.
Liu, Z.
Fainman, Y.
author_sort Smalley, J. S. T.
collection PubMed
description When engineered on scales much smaller than the operating wavelength, metal-semiconductor nanostructures exhibit properties unobtainable in nature. Namely, a uniaxial optical metamaterial described by a hyperbolic dispersion relation can simultaneously behave as a reflective metal and an absorptive or emissive semiconductor for electromagnetic waves with orthogonal linear polarization states. Using an unconventional multilayer architecture, we demonstrate luminescent hyperbolic metasurfaces, wherein distributed semiconducting quantum wells display extreme absorption and emission polarization anisotropy. Through normally incident micro-photoluminescence measurements, we observe absorption anisotropies greater than a factor of 10 and degree-of-linear polarization of emission >0.9. We observe the modification of emission spectra and, by incorporating wavelength-scale gratings, show a controlled reduction of polarization anisotropy. We verify hyperbolic dispersion with numerical simulations that model the metasurface as a composite nanoscale structure and according to the effective medium approximation. Finally, we experimentally demonstrate >350% emission intensity enhancement relative to the bare semiconducting quantum wells.
format Online
Article
Text
id pubmed-5473634
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-54736342017-06-28 Luminescent hyperbolic metasurfaces Smalley, J. S. T. Vallini, F. Montoya, S. A. Ferrari, L. Shahin, S. Riley, C. T. Kanté, B. Fullerton, E. E. Liu, Z. Fainman, Y. Nat Commun Article When engineered on scales much smaller than the operating wavelength, metal-semiconductor nanostructures exhibit properties unobtainable in nature. Namely, a uniaxial optical metamaterial described by a hyperbolic dispersion relation can simultaneously behave as a reflective metal and an absorptive or emissive semiconductor for electromagnetic waves with orthogonal linear polarization states. Using an unconventional multilayer architecture, we demonstrate luminescent hyperbolic metasurfaces, wherein distributed semiconducting quantum wells display extreme absorption and emission polarization anisotropy. Through normally incident micro-photoluminescence measurements, we observe absorption anisotropies greater than a factor of 10 and degree-of-linear polarization of emission >0.9. We observe the modification of emission spectra and, by incorporating wavelength-scale gratings, show a controlled reduction of polarization anisotropy. We verify hyperbolic dispersion with numerical simulations that model the metasurface as a composite nanoscale structure and according to the effective medium approximation. Finally, we experimentally demonstrate >350% emission intensity enhancement relative to the bare semiconducting quantum wells. Nature Publishing Group 2017-01-09 /pmc/articles/PMC5473634/ /pubmed/28067219 http://dx.doi.org/10.1038/ncomms13793 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Smalley, J. S. T.
Vallini, F.
Montoya, S. A.
Ferrari, L.
Shahin, S.
Riley, C. T.
Kanté, B.
Fullerton, E. E.
Liu, Z.
Fainman, Y.
Luminescent hyperbolic metasurfaces
title Luminescent hyperbolic metasurfaces
title_full Luminescent hyperbolic metasurfaces
title_fullStr Luminescent hyperbolic metasurfaces
title_full_unstemmed Luminescent hyperbolic metasurfaces
title_short Luminescent hyperbolic metasurfaces
title_sort luminescent hyperbolic metasurfaces
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473634/
https://www.ncbi.nlm.nih.gov/pubmed/28067219
http://dx.doi.org/10.1038/ncomms13793
work_keys_str_mv AT smalleyjst luminescenthyperbolicmetasurfaces
AT vallinif luminescenthyperbolicmetasurfaces
AT montoyasa luminescenthyperbolicmetasurfaces
AT ferraril luminescenthyperbolicmetasurfaces
AT shahins luminescenthyperbolicmetasurfaces
AT rileyct luminescenthyperbolicmetasurfaces
AT kanteb luminescenthyperbolicmetasurfaces
AT fullertonee luminescenthyperbolicmetasurfaces
AT liuz luminescenthyperbolicmetasurfaces
AT fainmany luminescenthyperbolicmetasurfaces