Cargando…
Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction
Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: (1) single-environment, main genotypic effect model (SM); (2) multi-environment...
Autores principales: | Bandeira e Sousa, Massaine, Cuevas, Jaime, de Oliveira Couto, Evellyn Giselly, Pérez-Rodríguez, Paulino, Jarquín, Diego, Fritsche-Neto, Roberto, Burgueño, Juan, Crossa, Jose |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473775/ https://www.ncbi.nlm.nih.gov/pubmed/28455415 http://dx.doi.org/10.1534/g3.117.042341 |
Ejemplares similares
-
Genomic-Enabled Prediction Kernel Models with Random Intercepts for Multi-environment Trials
por: Cuevas, Jaime, et al.
Publicado: (2018) -
Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models
por: Cuevas, Jaime, et al.
Publicado: (2016) -
BGGE: A New Package for Genomic-Enabled Prediction Incorporating Genotype × Environment Interaction Models
por: Granato, Italo, et al.
Publicado: (2018) -
Effect of F(1) and F(2) generations on genetic variability and working steps of doubled haploid production in maize
por: Couto, Evellyn Giselly de Oliveira, et al.
Publicado: (2019) -
Genomic Prediction in Maize Breeding Populations with Genotyping-by-Sequencing
por: Crossa, José, et al.
Publicado: (2013)