Cargando…
Prediction of lncRNA-protein interactions using HeteSim scores based on heterogeneous networks
Massive studies have indicated that long non-coding RNAs (lncRNAs) are critical for the regulation of cellular biological processes by binding with RNA-related proteins. However, only a few experimentally supported lncRNA-protein associations have been reported. Existing network-based methods are ty...
Autores principales: | Xiao, Yun, Zhang, Jingpu, Deng, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473862/ https://www.ncbi.nlm.nih.gov/pubmed/28623317 http://dx.doi.org/10.1038/s41598-017-03986-1 |
Ejemplares similares
-
Accurate prediction of protein-lncRNA interactions by diffusion and HeteSim features across heterogeneous network
por: Deng, Lei, et al.
Publicado: (2018) -
GBDTL2E: Predicting lncRNA-EF Associations Using Diffusion and HeteSim Features Based on a Heterogeneous Network
por: Wang, Jiaqi, et al.
Publicado: (2020) -
In Silico Prediction of Small Molecule-miRNA Associations Based on the HeteSim Algorithm
por: Qu, Jia, et al.
Publicado: (2018) -
Prediction of lncRNA functions using deep neural networks based on multiple networks
por: Deng, Lei, et al.
Publicado: (2023) -
Predicting lncRNA–Protein Interactions by Heterogenous Network Embedding
por: Zhao, Guoqing, et al.
Publicado: (2022)