Cargando…
Machine learning workflow to enhance predictions of Adverse Drug Reactions (ADRs) through drug-gene interactions: application to drugs for cutaneous diseases
Adverse drug reactions (ADRs) pose critical public health issues, affecting over 6% of hospitalized patients. While knowledge of potential drug-drug interactions (DDI) is necessary to prevent ADR, the rapid pace of drug discovery makes it challenging to maintain a strong insight into DDIs. In this s...
Autores principales: | Raja, Kalpana, Patrick, Matthew, Elder, James T., Tsoi, Lam C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473874/ https://www.ncbi.nlm.nih.gov/pubmed/28623363 http://dx.doi.org/10.1038/s41598-017-03914-3 |
Ejemplares similares
-
Children and ADRs (Adverse Drug Reactions)
por: Napoleone, Ettore
Publicado: (2010) -
Epidermiology of adverse drug reactions (ADRs) in the elderly
por: Ju-Young, Kim, et al.
Publicado: (2014) -
Adverse Drug Reactions (ADRs) of Montelukast in Children
por: Al-Shamrani, Abdullah, et al.
Publicado: (2022) -
Analysis of Cutaneous Adverse Drug Reactions Reported at the Regional ADR Monitoring Center
por: Modi, Anal, et al.
Publicado: (2019) -
Patterns of adverse drug reactions (ADRs) in Saudi Arabia
por: Bin Yousef, Nora, et al.
Publicado: (2022)