Cargando…
Qualifying a eukaryotic cell-free system for fluorescence based GPCR analyses
Membrane proteins are key elements in cell-mediated processes. In particular, G protein-coupled receptors (GPCRs) have attracted increasing interest since they affect cellular signaling. Furthermore, mutations in GPCRs can cause acquired and inheritable diseases. Up to date, there still exist a numb...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473880/ https://www.ncbi.nlm.nih.gov/pubmed/28623260 http://dx.doi.org/10.1038/s41598-017-03955-8 |
Sumario: | Membrane proteins are key elements in cell-mediated processes. In particular, G protein-coupled receptors (GPCRs) have attracted increasing interest since they affect cellular signaling. Furthermore, mutations in GPCRs can cause acquired and inheritable diseases. Up to date, there still exist a number of GPCRs that has not been structurally and functionally analyzed due to difficulties in cell-based membrane protein production. A promising approach for membrane protein synthesis and analysis has emerged during the last years and is known as cell-free protein synthesis (CFPS). Here, we describe a simply portable method to synthesize GPCRs and analyze their ligand-binding properties without the requirement of additional supplements such as liposomes or nanodiscs. This method is based on eukaryotic cell lysates containing translocationally active endogenous endoplasmic reticulum-derived microsomes where the insertion of GPCRs into biologically active membranes is supported. In this study we present CFPS in combination with fast fluorescence-based screening methods to determine the localization, orientation and ligand-binding properties of the endothelin B (ET-B) receptor upon expression in an insect-based cell-free system. To determine the functionality of the cell-free synthesized ET-B receptor, we analyzed the binding of its ligand endothelin-1 (ET-1) in a qualitative fluorescence-based assay and in a quantitative radioligand binding assay. |
---|