Cargando…
Impact of glycemic control on aortic stiffness, left ventricular mass and diastolic longitudinal function in type 2 diabetes mellitus
BACKGROUND: Poor glycemic control is associated with impaired left ventricular (LV) diastolic function in patients with type 2 diabetes mellitus (T2DM). Inappropriate LV mass increase and accelerated aortic stiffening were suggested to participate on deterioration of diastolic function. The present...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473965/ https://www.ncbi.nlm.nih.gov/pubmed/28623932 http://dx.doi.org/10.1186/s12933-017-0557-z |
Sumario: | BACKGROUND: Poor glycemic control is associated with impaired left ventricular (LV) diastolic function in patients with type 2 diabetes mellitus (T2DM). Inappropriate LV mass increase and accelerated aortic stiffening were suggested to participate on deterioration of diastolic function. The present study investigated the inter-relationships between glycemic control, early diastolic and systolic longitudinal velocity of mitral annulus, LV mass and aortic stiffness in T2DM patients free of cardiovascular disease and with preserved LV ejection fraction, and compared them with those observed in healthy volunteers of similar age and sex distribution. METHODS: 125 T2DM patients and 101 healthy volunteers underwent noninvasive measurement of systolic (s′) and early diastolic (e′) velocities of mitral annulus, LV mass, carotid-femoral pulse wave velocity (cfPWV) and local carotid blood pressure (BP). RESULTS: Forty-four (35.2%) T2DM patients had e′ velocity lower than that expected for age (against 7.9% in healthy volunteers; P < 0.0001), 34 (27.2%) had cfPWV higher than that expected for age and mean BP (against 5.9% in healthy volunteers; P < 0.0001), and 71 (56.8%) had LV mass higher than that expected for body size and stroke work (against 17.6% in healthy volunteers; P < 0.0001). Carotid systolic BP was higher in T2DM patients (124 ± 14 vs 111 ± 11 mmHg; P < 0.0001). In multivariate analysis, e′ velocity was independently related to age, carotid BP and s′ velocity in healthy volunteers, and to male sex, age, carotid BP, heart rate and LV mass in T2DM. Glycosylated hemoglobin (HbA1c) was independently related to cfPWV and LV mass in T2DM patients. T2DM patients with HbA1c ≥6.5% (N = 85) had higher cfPWV (P < 0.05), central BP (P = 0.01), prevalence of LV hypertrophy (P = 0.01) and lower e′ and s′ velocity (P = 0.001 and <0.05, respectively) as compared to those with HbA1c <6.5%. CONCLUSIONS: One-third of T2DM patients with preserved LV ejection fraction has sign of subclinical LV diastolic dysfunction. HbA1c levels are positively associated with LV mass and aortic stiffness, both of which show a negative independent impact on early diastolic velocity e′, the latter through an increase in afterload. T2DM patients with suboptimal glycemic control (HbA1c ≥ 6.5%) have lower diastolic and systolic LV longitudinal performance, together with increased aortic stiffness and a higher prevalence of LV hypertrophy. |
---|