Cargando…
Finding low-conductance sets with dense interactions (FLCD) for better protein complex prediction
BACKGROUND: Intuitively, proteins in the same protein complexes should highly interact with each other but rarely interact with the other proteins in protein-protein interaction (PPI) networks. Surprisingly, many existing computational algorithms do not directly detect protein complexes based on bot...
Autores principales: | Wang, Yijie, Qian, Xiaoning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5475323/ https://www.ncbi.nlm.nih.gov/pubmed/28361714 http://dx.doi.org/10.1186/s12918-017-0405-5 |
Ejemplares similares
-
ClusterM: a scalable algorithm for computational prediction of conserved protein complexes across multiple protein interaction networks
por: Wang, Yijie, et al.
Publicado: (2020) -
Joint clustering of protein interaction networks through Markov random walk
por: Wang, Yijie, et al.
Publicado: (2014) -
Protein complex prediction via dense subgraphs and false positive analysis
por: Hernandez, Cecilia, et al.
Publicado: (2017) -
Low potency toxins reveal dense interaction networks in metabolism
por: Bains, William
Publicado: (2016) -
Which clustering algorithm is better for predicting protein complexes?
por: Moschopoulos, Charalampos N, et al.
Publicado: (2011)