Cargando…
Bird sound spectrogram decomposition through Non-Negative Matrix Factorization for the acoustic classification of bird species
Feature extraction for Acoustic Bird Species Classification (ABSC) tasks has traditionally been based on parametric representations that were specifically developed for speech signals, such as Mel Frequency Cepstral Coefficients (MFCC). However, the discrimination capabilities of these features for...
Autores principales: | Ludeña-Choez, Jimmy, Quispe-Soncco, Raisa, Gallardo-Antolín, Ascensión |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476267/ https://www.ncbi.nlm.nih.gov/pubmed/28628630 http://dx.doi.org/10.1371/journal.pone.0179403 |
Ejemplares similares
-
Bird Species Identification Using Spectrogram Based on Multi-Channel Fusion of DCNNs
por: Zhang, Feiyu, et al.
Publicado: (2021) -
Estimation of Time-Varying Spectral Peaks and Decomposition of EEG Spectrograms
por: STOKES, PATRICK A., et al.
Publicado: (2020) -
High Accurate Environmental Sound Classification: Sub-Spectrogram Segmentation versus Temporal-Frequency Attention Mechanism
por: Qiao, Tianhao, et al.
Publicado: (2021) -
Emotional sounds of crowds: spectrogram-based analysis using deep learning
por: Franzoni, Valentina, et al.
Publicado: (2020) -
Automatic large-scale classification of bird sounds is strongly improved by unsupervised feature learning
por: Stowell, Dan, et al.
Publicado: (2014)