Cargando…

Functional neuroanatomy of speech signal decoding in primary progressive aphasias

The pathophysiology of primary progressive aphasias remains poorly understood. Here, we addressed this issue using activation fMRI in a cohort of 27 patients with primary progressive aphasia (nonfluent, semantic, and logopenic variants) versus 15 healthy controls. Participants listened passively to...

Descripción completa

Detalles Bibliográficos
Autores principales: Hardy, Chris J.D., Agustus, Jennifer L., Marshall, Charles R., Clark, Camilla N., Russell, Lucy L., Brotherhood, Emilie V., Bond, Rebecca L., Fiford, Cassidy M., Ondobaka, Sasha, Thomas, David L., Crutch, Sebastian J., Rohrer, Jonathan D., Warren, Jason D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476347/
https://www.ncbi.nlm.nih.gov/pubmed/28571652
http://dx.doi.org/10.1016/j.neurobiolaging.2017.04.026
_version_ 1783244591358541824
author Hardy, Chris J.D.
Agustus, Jennifer L.
Marshall, Charles R.
Clark, Camilla N.
Russell, Lucy L.
Brotherhood, Emilie V.
Bond, Rebecca L.
Fiford, Cassidy M.
Ondobaka, Sasha
Thomas, David L.
Crutch, Sebastian J.
Rohrer, Jonathan D.
Warren, Jason D.
author_facet Hardy, Chris J.D.
Agustus, Jennifer L.
Marshall, Charles R.
Clark, Camilla N.
Russell, Lucy L.
Brotherhood, Emilie V.
Bond, Rebecca L.
Fiford, Cassidy M.
Ondobaka, Sasha
Thomas, David L.
Crutch, Sebastian J.
Rohrer, Jonathan D.
Warren, Jason D.
author_sort Hardy, Chris J.D.
collection PubMed
description The pathophysiology of primary progressive aphasias remains poorly understood. Here, we addressed this issue using activation fMRI in a cohort of 27 patients with primary progressive aphasia (nonfluent, semantic, and logopenic variants) versus 15 healthy controls. Participants listened passively to sequences of spoken syllables in which we manipulated 3-key auditory speech signal characteristics: temporal regularity, phonemic spectral structure, and pitch sequence entropy. Relative to healthy controls, nonfluent variant patients showed reduced activation of medial Heschl's gyrus in response to any auditory stimulation and reduced activation of anterior cingulate to temporal irregularity. Semantic variant patients had relatively reduced activation of caudate and anterior cingulate in response to increased entropy. Logopenic variant patients showed reduced activation of posterior superior temporal cortex to phonemic spectral structure. Taken together, our findings suggest that impaired processing of core speech signal attributes may drive particular progressive aphasia syndromes and could index a generic physiological mechanism of reduced computational efficiency relevant to all these syndromes, with implications for development of new biomarkers and therapeutic interventions.
format Online
Article
Text
id pubmed-5476347
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-54763472017-08-01 Functional neuroanatomy of speech signal decoding in primary progressive aphasias Hardy, Chris J.D. Agustus, Jennifer L. Marshall, Charles R. Clark, Camilla N. Russell, Lucy L. Brotherhood, Emilie V. Bond, Rebecca L. Fiford, Cassidy M. Ondobaka, Sasha Thomas, David L. Crutch, Sebastian J. Rohrer, Jonathan D. Warren, Jason D. Neurobiol Aging Regular Article The pathophysiology of primary progressive aphasias remains poorly understood. Here, we addressed this issue using activation fMRI in a cohort of 27 patients with primary progressive aphasia (nonfluent, semantic, and logopenic variants) versus 15 healthy controls. Participants listened passively to sequences of spoken syllables in which we manipulated 3-key auditory speech signal characteristics: temporal regularity, phonemic spectral structure, and pitch sequence entropy. Relative to healthy controls, nonfluent variant patients showed reduced activation of medial Heschl's gyrus in response to any auditory stimulation and reduced activation of anterior cingulate to temporal irregularity. Semantic variant patients had relatively reduced activation of caudate and anterior cingulate in response to increased entropy. Logopenic variant patients showed reduced activation of posterior superior temporal cortex to phonemic spectral structure. Taken together, our findings suggest that impaired processing of core speech signal attributes may drive particular progressive aphasia syndromes and could index a generic physiological mechanism of reduced computational efficiency relevant to all these syndromes, with implications for development of new biomarkers and therapeutic interventions. Elsevier 2017-08 /pmc/articles/PMC5476347/ /pubmed/28571652 http://dx.doi.org/10.1016/j.neurobiolaging.2017.04.026 Text en © 2017 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Regular Article
Hardy, Chris J.D.
Agustus, Jennifer L.
Marshall, Charles R.
Clark, Camilla N.
Russell, Lucy L.
Brotherhood, Emilie V.
Bond, Rebecca L.
Fiford, Cassidy M.
Ondobaka, Sasha
Thomas, David L.
Crutch, Sebastian J.
Rohrer, Jonathan D.
Warren, Jason D.
Functional neuroanatomy of speech signal decoding in primary progressive aphasias
title Functional neuroanatomy of speech signal decoding in primary progressive aphasias
title_full Functional neuroanatomy of speech signal decoding in primary progressive aphasias
title_fullStr Functional neuroanatomy of speech signal decoding in primary progressive aphasias
title_full_unstemmed Functional neuroanatomy of speech signal decoding in primary progressive aphasias
title_short Functional neuroanatomy of speech signal decoding in primary progressive aphasias
title_sort functional neuroanatomy of speech signal decoding in primary progressive aphasias
topic Regular Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476347/
https://www.ncbi.nlm.nih.gov/pubmed/28571652
http://dx.doi.org/10.1016/j.neurobiolaging.2017.04.026
work_keys_str_mv AT hardychrisjd functionalneuroanatomyofspeechsignaldecodinginprimaryprogressiveaphasias
AT agustusjenniferl functionalneuroanatomyofspeechsignaldecodinginprimaryprogressiveaphasias
AT marshallcharlesr functionalneuroanatomyofspeechsignaldecodinginprimaryprogressiveaphasias
AT clarkcamillan functionalneuroanatomyofspeechsignaldecodinginprimaryprogressiveaphasias
AT russelllucyl functionalneuroanatomyofspeechsignaldecodinginprimaryprogressiveaphasias
AT brotherhoodemiliev functionalneuroanatomyofspeechsignaldecodinginprimaryprogressiveaphasias
AT bondrebeccal functionalneuroanatomyofspeechsignaldecodinginprimaryprogressiveaphasias
AT fifordcassidym functionalneuroanatomyofspeechsignaldecodinginprimaryprogressiveaphasias
AT ondobakasasha functionalneuroanatomyofspeechsignaldecodinginprimaryprogressiveaphasias
AT thomasdavidl functionalneuroanatomyofspeechsignaldecodinginprimaryprogressiveaphasias
AT crutchsebastianj functionalneuroanatomyofspeechsignaldecodinginprimaryprogressiveaphasias
AT rohrerjonathand functionalneuroanatomyofspeechsignaldecodinginprimaryprogressiveaphasias
AT warrenjasond functionalneuroanatomyofspeechsignaldecodinginprimaryprogressiveaphasias