Cargando…

Colony adaptive response to simulated heat waves and consequences at the individual level in honeybees (Apis mellifera)

Since climate change is expected to bring more severe and frequent extreme weather events such as heat waves, assessing the physiological and behavioural sensitivity of organisms to temperature becomes a priority. We therefore investigated the responses of honeybees, an important insect pollinator,...

Descripción completa

Detalles Bibliográficos
Autores principales: Bordier, Célia, Dechatre, Hélène, Suchail, Séverine, Peruzzi, Mathilde, Soubeyrand, Samuel, Pioz, Maryline, Pélissier, Michel, Crauser, Didier, Conte, Yves Le, Alaux, Cédric
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476575/
https://www.ncbi.nlm.nih.gov/pubmed/28630407
http://dx.doi.org/10.1038/s41598-017-03944-x
Descripción
Sumario:Since climate change is expected to bring more severe and frequent extreme weather events such as heat waves, assessing the physiological and behavioural sensitivity of organisms to temperature becomes a priority. We therefore investigated the responses of honeybees, an important insect pollinator, to simulated heat waves (SHW). Honeybees are known to maintain strict brood thermoregulation, but the consequences at the colony and individual levels remain poorly understood. For the first time, we quantified and modelled colony real-time activity and found a 70% increase in foraging activity with SHW, which was likely due to the recruitment of previously inactive bees. Pollen and nectar foraging was not impacted, but an increase in water foragers was observed at the expense of empty bees. Contrary to individual energetic resources, vitellogenin levels increased with SHW, probably to protect bees against oxidative stress. Finally, though immune functions were not altered, we observed a significant decrease in deformed wing virus loads with SHW. In conclusion, we demonstrated that honeybees could remarkably adapt to heat waves without a cost at the individual level and on resource flow. However, the recruitment of backup foraging forces might be costly by lowering the colony buffering capacity against additional environmental pressures.