Cargando…
Reconstructing cell cycle pseudo time-series via single-cell transcriptome data
Single-cell mRNA sequencing, which permits whole transcriptional profiling of individual cells, has been widely applied to study growth and development of tissues and tumors. Resolving cell cycle for such groups of cells is significant, but may not be adequately achieved by commonly used approaches....
Autores principales: | Liu, Zehua, Lou, Huazhe, Xie, Kaikun, Wang, Hao, Chen, Ning, Aparicio, Oscar M., Zhang, Michael Q., Jiang, Rui, Chen, Ting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476636/ https://www.ncbi.nlm.nih.gov/pubmed/28630425 http://dx.doi.org/10.1038/s41467-017-00039-z |
Ejemplares similares
-
redPATH: Reconstructing the Pseudo Development Time of Cell Lineages in Single-cell RNA-seq Data and Applications in Cancer
por: Xie, Kaikun, et al.
Publicado: (2021) -
scAIDE: clustering of large-scale single-cell RNA-seq data reveals putative and rare cell types
por: Xie, Kaikun, et al.
Publicado: (2020) -
PseudoGA: cell pseudotime reconstruction based on genetic algorithm
por: Mondal, Pronoy Kanti, et al.
Publicado: (2021) -
A case report of pseudo–pseudo Meigs’ syndrome
por: Li, Ting, et al.
Publicado: (2019) -
LISA: Accurate reconstruction of cell trajectory and pseudo-time for massive single cell RNA-seq data
por: Chen, Yang, et al.
Publicado: (2019)