Cargando…
NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells
NAD(+) is a vital redox cofactor and a substrate required for activity of various enzyme families, including sirtuins and poly(ADP-ribose) polymerases. Supplementation with NAD(+) precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), protects against metabolic disease,...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476803/ https://www.ncbi.nlm.nih.gov/pubmed/27725675 http://dx.doi.org/10.1038/ncomms13103 |
_version_ | 1783244669029711872 |
---|---|
author | Ratajczak, Joanna Joffraud, Magali Trammell, Samuel A. J. Ras, Rosa Canela, Núria Boutant, Marie Kulkarni, Sameer S. Rodrigues, Marcelo Redpath, Philip Migaud, Marie E. Auwerx, Johan Yanes, Oscar Brenner, Charles Cantó, Carles |
author_facet | Ratajczak, Joanna Joffraud, Magali Trammell, Samuel A. J. Ras, Rosa Canela, Núria Boutant, Marie Kulkarni, Sameer S. Rodrigues, Marcelo Redpath, Philip Migaud, Marie E. Auwerx, Johan Yanes, Oscar Brenner, Charles Cantó, Carles |
author_sort | Ratajczak, Joanna |
collection | PubMed |
description | NAD(+) is a vital redox cofactor and a substrate required for activity of various enzyme families, including sirtuins and poly(ADP-ribose) polymerases. Supplementation with NAD(+) precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), protects against metabolic disease, neurodegenerative disorders and age-related physiological decline in mammals. Here we show that nicotinamide riboside kinase 1 (NRK1) is necessary and rate-limiting for the use of exogenous NR and NMN for NAD(+) synthesis. Using genetic gain- and loss-of-function models, we further demonstrate that the role of NRK1 in driving NAD(+) synthesis from other NAD(+) precursors, such as nicotinamide or nicotinic acid, is dispensable. Using stable isotope-labelled compounds, we confirm NMN is metabolized extracellularly to NR that is then taken up by the cell and converted into NAD(+). Our results indicate that mammalian cells require conversion of extracellular NMN to NR for cellular uptake and NAD(+) synthesis, explaining the overlapping metabolic effects observed with the two compounds. |
format | Online Article Text |
id | pubmed-5476803 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-54768032017-07-03 NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells Ratajczak, Joanna Joffraud, Magali Trammell, Samuel A. J. Ras, Rosa Canela, Núria Boutant, Marie Kulkarni, Sameer S. Rodrigues, Marcelo Redpath, Philip Migaud, Marie E. Auwerx, Johan Yanes, Oscar Brenner, Charles Cantó, Carles Nat Commun Article NAD(+) is a vital redox cofactor and a substrate required for activity of various enzyme families, including sirtuins and poly(ADP-ribose) polymerases. Supplementation with NAD(+) precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), protects against metabolic disease, neurodegenerative disorders and age-related physiological decline in mammals. Here we show that nicotinamide riboside kinase 1 (NRK1) is necessary and rate-limiting for the use of exogenous NR and NMN for NAD(+) synthesis. Using genetic gain- and loss-of-function models, we further demonstrate that the role of NRK1 in driving NAD(+) synthesis from other NAD(+) precursors, such as nicotinamide or nicotinic acid, is dispensable. Using stable isotope-labelled compounds, we confirm NMN is metabolized extracellularly to NR that is then taken up by the cell and converted into NAD(+). Our results indicate that mammalian cells require conversion of extracellular NMN to NR for cellular uptake and NAD(+) synthesis, explaining the overlapping metabolic effects observed with the two compounds. Nature Publishing Group 2016-10-11 /pmc/articles/PMC5476803/ /pubmed/27725675 http://dx.doi.org/10.1038/ncomms13103 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Ratajczak, Joanna Joffraud, Magali Trammell, Samuel A. J. Ras, Rosa Canela, Núria Boutant, Marie Kulkarni, Sameer S. Rodrigues, Marcelo Redpath, Philip Migaud, Marie E. Auwerx, Johan Yanes, Oscar Brenner, Charles Cantó, Carles NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells |
title | NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells |
title_full | NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells |
title_fullStr | NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells |
title_full_unstemmed | NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells |
title_short | NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells |
title_sort | nrk1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476803/ https://www.ncbi.nlm.nih.gov/pubmed/27725675 http://dx.doi.org/10.1038/ncomms13103 |
work_keys_str_mv | AT ratajczakjoanna nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells AT joffraudmagali nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells AT trammellsamuelaj nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells AT rasrosa nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells AT canelanuria nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells AT boutantmarie nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells AT kulkarnisameers nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells AT rodriguesmarcelo nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells AT redpathphilip nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells AT migaudmariee nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells AT auwerxjohan nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells AT yanesoscar nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells AT brennercharles nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells AT cantocarles nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells |