Cargando…

NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells

NAD(+) is a vital redox cofactor and a substrate required for activity of various enzyme families, including sirtuins and poly(ADP-ribose) polymerases. Supplementation with NAD(+) precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), protects against metabolic disease,...

Descripción completa

Detalles Bibliográficos
Autores principales: Ratajczak, Joanna, Joffraud, Magali, Trammell, Samuel A. J., Ras, Rosa, Canela, Núria, Boutant, Marie, Kulkarni, Sameer S., Rodrigues, Marcelo, Redpath, Philip, Migaud, Marie E., Auwerx, Johan, Yanes, Oscar, Brenner, Charles, Cantó, Carles
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476803/
https://www.ncbi.nlm.nih.gov/pubmed/27725675
http://dx.doi.org/10.1038/ncomms13103
_version_ 1783244669029711872
author Ratajczak, Joanna
Joffraud, Magali
Trammell, Samuel A. J.
Ras, Rosa
Canela, Núria
Boutant, Marie
Kulkarni, Sameer S.
Rodrigues, Marcelo
Redpath, Philip
Migaud, Marie E.
Auwerx, Johan
Yanes, Oscar
Brenner, Charles
Cantó, Carles
author_facet Ratajczak, Joanna
Joffraud, Magali
Trammell, Samuel A. J.
Ras, Rosa
Canela, Núria
Boutant, Marie
Kulkarni, Sameer S.
Rodrigues, Marcelo
Redpath, Philip
Migaud, Marie E.
Auwerx, Johan
Yanes, Oscar
Brenner, Charles
Cantó, Carles
author_sort Ratajczak, Joanna
collection PubMed
description NAD(+) is a vital redox cofactor and a substrate required for activity of various enzyme families, including sirtuins and poly(ADP-ribose) polymerases. Supplementation with NAD(+) precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), protects against metabolic disease, neurodegenerative disorders and age-related physiological decline in mammals. Here we show that nicotinamide riboside kinase 1 (NRK1) is necessary and rate-limiting for the use of exogenous NR and NMN for NAD(+) synthesis. Using genetic gain- and loss-of-function models, we further demonstrate that the role of NRK1 in driving NAD(+) synthesis from other NAD(+) precursors, such as nicotinamide or nicotinic acid, is dispensable. Using stable isotope-labelled compounds, we confirm NMN is metabolized extracellularly to NR that is then taken up by the cell and converted into NAD(+). Our results indicate that mammalian cells require conversion of extracellular NMN to NR for cellular uptake and NAD(+) synthesis, explaining the overlapping metabolic effects observed with the two compounds.
format Online
Article
Text
id pubmed-5476803
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-54768032017-07-03 NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells Ratajczak, Joanna Joffraud, Magali Trammell, Samuel A. J. Ras, Rosa Canela, Núria Boutant, Marie Kulkarni, Sameer S. Rodrigues, Marcelo Redpath, Philip Migaud, Marie E. Auwerx, Johan Yanes, Oscar Brenner, Charles Cantó, Carles Nat Commun Article NAD(+) is a vital redox cofactor and a substrate required for activity of various enzyme families, including sirtuins and poly(ADP-ribose) polymerases. Supplementation with NAD(+) precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), protects against metabolic disease, neurodegenerative disorders and age-related physiological decline in mammals. Here we show that nicotinamide riboside kinase 1 (NRK1) is necessary and rate-limiting for the use of exogenous NR and NMN for NAD(+) synthesis. Using genetic gain- and loss-of-function models, we further demonstrate that the role of NRK1 in driving NAD(+) synthesis from other NAD(+) precursors, such as nicotinamide or nicotinic acid, is dispensable. Using stable isotope-labelled compounds, we confirm NMN is metabolized extracellularly to NR that is then taken up by the cell and converted into NAD(+). Our results indicate that mammalian cells require conversion of extracellular NMN to NR for cellular uptake and NAD(+) synthesis, explaining the overlapping metabolic effects observed with the two compounds. Nature Publishing Group 2016-10-11 /pmc/articles/PMC5476803/ /pubmed/27725675 http://dx.doi.org/10.1038/ncomms13103 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Ratajczak, Joanna
Joffraud, Magali
Trammell, Samuel A. J.
Ras, Rosa
Canela, Núria
Boutant, Marie
Kulkarni, Sameer S.
Rodrigues, Marcelo
Redpath, Philip
Migaud, Marie E.
Auwerx, Johan
Yanes, Oscar
Brenner, Charles
Cantó, Carles
NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells
title NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells
title_full NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells
title_fullStr NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells
title_full_unstemmed NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells
title_short NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells
title_sort nrk1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476803/
https://www.ncbi.nlm.nih.gov/pubmed/27725675
http://dx.doi.org/10.1038/ncomms13103
work_keys_str_mv AT ratajczakjoanna nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells
AT joffraudmagali nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells
AT trammellsamuelaj nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells
AT rasrosa nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells
AT canelanuria nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells
AT boutantmarie nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells
AT kulkarnisameers nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells
AT rodriguesmarcelo nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells
AT redpathphilip nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells
AT migaudmariee nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells
AT auwerxjohan nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells
AT yanesoscar nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells
AT brennercharles nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells
AT cantocarles nrk1controlsnicotinamidemononucleotideandnicotinamideribosidemetabolisminmammaliancells