Cargando…

Exponentially Modified Peak Functions in Biomedical Sciences and Related Disciplines

In many cases relevant to biomedicine, a variable time, which features a certain distribution, is required for objects of interest to pass from an initial to an intermediate state, out of which they exit at random to a final state. In such cases, the distribution of variable times between exiting th...

Descripción completa

Detalles Bibliográficos
Autor principal: Golubev, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476835/
https://www.ncbi.nlm.nih.gov/pubmed/28676834
http://dx.doi.org/10.1155/2017/7925106
_version_ 1783244674412052480
author Golubev, A.
author_facet Golubev, A.
author_sort Golubev, A.
collection PubMed
description In many cases relevant to biomedicine, a variable time, which features a certain distribution, is required for objects of interest to pass from an initial to an intermediate state, out of which they exit at random to a final state. In such cases, the distribution of variable times between exiting the initial and entering the final state must conform to the convolution of the first distribution and a negative exponential distribution. A common example is the exponentially modified Gaussian (EMG), which is widely used in chromatography for peak analysis and is long known as ex-Gaussian in psychophysiology, where it is applied to times from stimulus to response. In molecular and cell biology, EMG, compared with commonly used simple distributions, such as lognormal, gamma, and Wald, provides better fits to the variabilities of times between consecutive cell divisions and transcriptional bursts and has more straightforwardly interpreted parameters. However, since the range of definition of the Gaussian component of EMG is unlimited, data approximation with EMG may extend to the negative domain. This extension may seem negligible when the coefficient of variance of the Gaussian component is small but becomes considerable when the coefficient increases. Therefore, although in many cases an EMG may be an acceptable approximation of data, an exponentially modified nonnegative peak function, such as gamma-distribution, can make more sense in physical terms. In the present short review, EMG and exponentially modified gamma-distribution (EMGD) are discussed with regard to their applicability to data on cell cycle, gene expression, physiological responses to stimuli, and other cases, some of which may be interpreted as decision-making. In practical fitting terms, EMG and EMGD are equivalent in outperforming other functions; however, when the coefficient of variance of the Gaussian component of EMG is greater than ca. 0.4, EMGD is preferable.
format Online
Article
Text
id pubmed-5476835
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-54768352017-07-04 Exponentially Modified Peak Functions in Biomedical Sciences and Related Disciplines Golubev, A. Comput Math Methods Med Research Article In many cases relevant to biomedicine, a variable time, which features a certain distribution, is required for objects of interest to pass from an initial to an intermediate state, out of which they exit at random to a final state. In such cases, the distribution of variable times between exiting the initial and entering the final state must conform to the convolution of the first distribution and a negative exponential distribution. A common example is the exponentially modified Gaussian (EMG), which is widely used in chromatography for peak analysis and is long known as ex-Gaussian in psychophysiology, where it is applied to times from stimulus to response. In molecular and cell biology, EMG, compared with commonly used simple distributions, such as lognormal, gamma, and Wald, provides better fits to the variabilities of times between consecutive cell divisions and transcriptional bursts and has more straightforwardly interpreted parameters. However, since the range of definition of the Gaussian component of EMG is unlimited, data approximation with EMG may extend to the negative domain. This extension may seem negligible when the coefficient of variance of the Gaussian component is small but becomes considerable when the coefficient increases. Therefore, although in many cases an EMG may be an acceptable approximation of data, an exponentially modified nonnegative peak function, such as gamma-distribution, can make more sense in physical terms. In the present short review, EMG and exponentially modified gamma-distribution (EMGD) are discussed with regard to their applicability to data on cell cycle, gene expression, physiological responses to stimuli, and other cases, some of which may be interpreted as decision-making. In practical fitting terms, EMG and EMGD are equivalent in outperforming other functions; however, when the coefficient of variance of the Gaussian component of EMG is greater than ca. 0.4, EMGD is preferable. Hindawi 2017 2017-06-05 /pmc/articles/PMC5476835/ /pubmed/28676834 http://dx.doi.org/10.1155/2017/7925106 Text en Copyright © 2017 A. Golubev. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Golubev, A.
Exponentially Modified Peak Functions in Biomedical Sciences and Related Disciplines
title Exponentially Modified Peak Functions in Biomedical Sciences and Related Disciplines
title_full Exponentially Modified Peak Functions in Biomedical Sciences and Related Disciplines
title_fullStr Exponentially Modified Peak Functions in Biomedical Sciences and Related Disciplines
title_full_unstemmed Exponentially Modified Peak Functions in Biomedical Sciences and Related Disciplines
title_short Exponentially Modified Peak Functions in Biomedical Sciences and Related Disciplines
title_sort exponentially modified peak functions in biomedical sciences and related disciplines
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476835/
https://www.ncbi.nlm.nih.gov/pubmed/28676834
http://dx.doi.org/10.1155/2017/7925106
work_keys_str_mv AT golubeva exponentiallymodifiedpeakfunctionsinbiomedicalsciencesandrelateddisciplines