Cargando…

Genetic Nrf2 Overactivation Inhibits the Deleterious Effects Induced by Hepatocyte-Specific c-met Deletion during the Progression of NASH

We have recently shown that hepatocyte-specific c-met deficiency accelerates the progression of nonalcoholic steatohepatitis in experimental murine models resulting in augmented production of reactive oxygen species and accelerated development of fibrosis. The aim of this study focuses on the elucid...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramadori, Pierluigi, Drescher, Hannah, Erschfeld, Stephanie, Fragoulis, Athanassios, Kensler, Thomas W., Wruck, Christoph Jan, Cubero, Francisco Javier, Trautwein, Christian, Streetz, Konrad L., Kroy, Daniela C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476895/
https://www.ncbi.nlm.nih.gov/pubmed/28676836
http://dx.doi.org/10.1155/2017/3420286
Descripción
Sumario:We have recently shown that hepatocyte-specific c-met deficiency accelerates the progression of nonalcoholic steatohepatitis in experimental murine models resulting in augmented production of reactive oxygen species and accelerated development of fibrosis. The aim of this study focuses on the elucidation of the underlying cellular mechanisms driven by Nrf2 overactivation in hepatocytes lacking c-met receptor characterized by a severe unbalance between pro-oxidant and antioxidant functions. Control mice (c-met(fx/fx)), single c-met knockouts (c-met(Δhepa)), and double c-met/Keap1 knockouts (met/Keap1(Δhepa)) were then fed a chow or a methionine-choline-deficient (MCD) diet, respectively, for 4 weeks to reproduce the features of nonalcoholic steatohepatitis. Upon MCD feeding, met/Keap1(Δhepa) mice displayed increased liver mass albeit decreased triglyceride accumulation. The marked increase of oxidative stress observed in c-met(Δhepa) was restored in the double mutants as assessed by 4-HNE immunostaining and by the expression of genes responsible for the generation of free radicals. Moreover, double knockout mice presented a reduced amount of liver-infiltrating cells and the exacerbation of fibrosis progression observed in c-met(Δhepa) livers was significantly inhibited in met/Keap1(Δhepa). Therefore, genetic activation of the antioxidant transcription factor Nrf2 improves liver damage and repair in hepatocyte-specific c-met-deficient mice mainly through restoring a balance in the cellular redox homeostasis.