Cargando…
MONO, DI and TRI SSRs data extraction & storage from 1403 virus genomes with next generation retrieval mechanism
Now a day׳s SSRs occupy the dominant role in different areas of bio-informatics like new virus identification, DNA finger printing, paternity & maternity identification, disease identification, future disease expectations and possibilities etc., Due to their wide applications in various fields a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476967/ https://www.ncbi.nlm.nih.gov/pubmed/28653026 http://dx.doi.org/10.1016/j.dib.2017.06.008 |
Sumario: | Now a day׳s SSRs occupy the dominant role in different areas of bio-informatics like new virus identification, DNA finger printing, paternity & maternity identification, disease identification, future disease expectations and possibilities etc., Due to their wide applications in various fields and their significance, SSRs have been the area of interest for many researchers. In the SSRs extraction, retrieval algorithms are used; if retrieval algorithms quality is improved then automatically SSRs extraction system will achieve the most relevant results. For this retrieval purpose in this paper a new retrieval mechanism is proposed which will extracted the MONO, DI and TRI patterns. To extract the MONO, DI and TRI patterns using proposed retrieval mechanism in this paper, DNA sequence of 1403 virus genome data sets are considered and different MONO, DI and TRI patterns are searched in the data genome sequence file. The proposed Next Generation Sequencing (NGS) retrieval mechanism extracted the MONO, DI and TRI patterns without missing anything. It is observed that the retrieval mechanism reduces the unnecessary comparisons. Finally the extracted SSRs provide the useful, single view and useful resource to researchers. |
---|