Cargando…

Epitope mapping and characterization of a novel Nsp10-specific monoclonal antibody that differentiates genotype 2 PRRSV from genotype 1 PRRSV

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV), the causative agent of PRRS, has two distinct and highly diverse genotypes (genotype 1 and genotype 2) in the field. Accurate diagnosis and differentiation of the two genotypes of PRRSV are critical to the effective prevention...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zhibang, Wen, Xuexia, Dong, Jianguo, Ge, Xinna, Zhou, Lei, Yang, Hanchun, Guo, Xin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5477253/
https://www.ncbi.nlm.nih.gov/pubmed/28629383
http://dx.doi.org/10.1186/s12985-017-0782-9
Descripción
Sumario:BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV), the causative agent of PRRS, has two distinct and highly diverse genotypes (genotype 1 and genotype 2) in the field. Accurate diagnosis and differentiation of the two genotypes of PRRSV are critical to the effective prevention and control of PRRS. The non-structural protein 10 (Nsp10) plays a vital role in viral replication and is one of the most conserved proteins of PRRSV, thus constituting a good candidate for PRRSV diagnosis. RESULTS: In this study, we generated a monoclonal antibody (mAb) 4D9 against Nsp10 by immunizing BALB/c mice with purified recombinant Nsp10 expressed by an Escherichia coli system. Through fine epitope mapping of mAb 4D9 using a panel of eukaryotic expressed polypeptides with GFP-tags, we identified the motif (286)AIQPDYRDKL(295) as the minimal unit of the linear B-cell epitope recognized by mAb 4D9. Protein sequence alignment indicated that (286)AIQPDYRDKL(295) was highly conserved in genotype 2 PRRSV strains, whereas genotype 1 PRRSV strains had variable amino acids in this motif. Furthermore, a mutant of the motif carrying two constant amino acids of genotype 1 PRRSV, Cys290 and Glu293, failed to react with mAb 4D9. More importantly, the mAb 4D9 could differentiate genotype 2 PRRSV strains from genotype 1 PRRSV strains using Western blotting and immunofluorescence analysis. CONCLUSION: Our findings suggest that Nsp10-specific mAb generated in this study could be a useful tool for basic research and may facilitate the establishment of diagnostic methods to discriminate between genotype 1 and genotype 2 PRRSV infection.