Cargando…
Droplet digital PCR for detection and quantification of circulating tumor DNA in plasma of head and neck cancer patients
BACKGROUND: During posttreatment surveillance of head and neck cancer patients, imaging is insufficiently accurate for the early detection of relapsing disease. Free circulating tumor DNA (ctDNA) may serve as a novel biomarker for monitoring tumor burden during posttreatment surveillance of these pa...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5477260/ https://www.ncbi.nlm.nih.gov/pubmed/28629339 http://dx.doi.org/10.1186/s12885-017-3424-0 |
_version_ | 1783244754260066304 |
---|---|
author | van Ginkel, Joost H. Huibers, Manon M. H. van Es, Robert J. J. de Bree, Remco Willems, Stefan M. |
author_facet | van Ginkel, Joost H. Huibers, Manon M. H. van Es, Robert J. J. de Bree, Remco Willems, Stefan M. |
author_sort | van Ginkel, Joost H. |
collection | PubMed |
description | BACKGROUND: During posttreatment surveillance of head and neck cancer patients, imaging is insufficiently accurate for the early detection of relapsing disease. Free circulating tumor DNA (ctDNA) may serve as a novel biomarker for monitoring tumor burden during posttreatment surveillance of these patients. In this exploratory study, we investigated whether low level ctDNA in plasma of head and neck cancer patients can be detected using Droplet Digital PCR (ddPCR). METHODS: TP53 mutations were determined in surgically resected primary tumor samples from six patients with high stage (II-IV), moderate to poorly differentiated head and neck squamous cell carcinoma (HNSCC). Subsequently, mutation specific ddPCR assays were designed. Pretreatment plasma samples from these patients were examined on the presence of ctDNA by ddPCR using the mutation-specific assays. The ddPCR results were evaluated alongside clinicopathological data. RESULTS: In all cases, plasma samples were found positive for targeted TP53 mutations in varying degrees (absolute quantification of 2.2–422 mutational copies/ml plasma). Mutations were detected in wild-type TP53 background templates of 7667–156,667 copies/ml plasma, yielding fractional abundances of down to 0.01%. CONCLUSIONS: Our results show that detection of tumor specific TP53 mutations in low level ctDNA from HNSCC patients using ddPCR is technically feasible and provide ground for future research on ctDNA quantification for the use of diagnostic biomarkers in the posttreatment surveillance of HNSCC patients. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12885-017-3424-0) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5477260 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-54772602017-06-23 Droplet digital PCR for detection and quantification of circulating tumor DNA in plasma of head and neck cancer patients van Ginkel, Joost H. Huibers, Manon M. H. van Es, Robert J. J. de Bree, Remco Willems, Stefan M. BMC Cancer Research Article BACKGROUND: During posttreatment surveillance of head and neck cancer patients, imaging is insufficiently accurate for the early detection of relapsing disease. Free circulating tumor DNA (ctDNA) may serve as a novel biomarker for monitoring tumor burden during posttreatment surveillance of these patients. In this exploratory study, we investigated whether low level ctDNA in plasma of head and neck cancer patients can be detected using Droplet Digital PCR (ddPCR). METHODS: TP53 mutations were determined in surgically resected primary tumor samples from six patients with high stage (II-IV), moderate to poorly differentiated head and neck squamous cell carcinoma (HNSCC). Subsequently, mutation specific ddPCR assays were designed. Pretreatment plasma samples from these patients were examined on the presence of ctDNA by ddPCR using the mutation-specific assays. The ddPCR results were evaluated alongside clinicopathological data. RESULTS: In all cases, plasma samples were found positive for targeted TP53 mutations in varying degrees (absolute quantification of 2.2–422 mutational copies/ml plasma). Mutations were detected in wild-type TP53 background templates of 7667–156,667 copies/ml plasma, yielding fractional abundances of down to 0.01%. CONCLUSIONS: Our results show that detection of tumor specific TP53 mutations in low level ctDNA from HNSCC patients using ddPCR is technically feasible and provide ground for future research on ctDNA quantification for the use of diagnostic biomarkers in the posttreatment surveillance of HNSCC patients. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12885-017-3424-0) contains supplementary material, which is available to authorized users. BioMed Central 2017-06-19 /pmc/articles/PMC5477260/ /pubmed/28629339 http://dx.doi.org/10.1186/s12885-017-3424-0 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article van Ginkel, Joost H. Huibers, Manon M. H. van Es, Robert J. J. de Bree, Remco Willems, Stefan M. Droplet digital PCR for detection and quantification of circulating tumor DNA in plasma of head and neck cancer patients |
title | Droplet digital PCR for detection and quantification of circulating tumor DNA in plasma of head and neck cancer patients |
title_full | Droplet digital PCR for detection and quantification of circulating tumor DNA in plasma of head and neck cancer patients |
title_fullStr | Droplet digital PCR for detection and quantification of circulating tumor DNA in plasma of head and neck cancer patients |
title_full_unstemmed | Droplet digital PCR for detection and quantification of circulating tumor DNA in plasma of head and neck cancer patients |
title_short | Droplet digital PCR for detection and quantification of circulating tumor DNA in plasma of head and neck cancer patients |
title_sort | droplet digital pcr for detection and quantification of circulating tumor dna in plasma of head and neck cancer patients |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5477260/ https://www.ncbi.nlm.nih.gov/pubmed/28629339 http://dx.doi.org/10.1186/s12885-017-3424-0 |
work_keys_str_mv | AT vanginkeljoosth dropletdigitalpcrfordetectionandquantificationofcirculatingtumordnainplasmaofheadandneckcancerpatients AT huibersmanonmh dropletdigitalpcrfordetectionandquantificationofcirculatingtumordnainplasmaofheadandneckcancerpatients AT vanesrobertjj dropletdigitalpcrfordetectionandquantificationofcirculatingtumordnainplasmaofheadandneckcancerpatients AT debreeremco dropletdigitalpcrfordetectionandquantificationofcirculatingtumordnainplasmaofheadandneckcancerpatients AT willemsstefanm dropletdigitalpcrfordetectionandquantificationofcirculatingtumordnainplasmaofheadandneckcancerpatients |