Cargando…
A hyper-thermostable α-amylase from Pyrococcus furiosus accumulates in Nicotiana tabacum as functional aggregates
BACKGROUND: Alpha amylase hydrolyzes α-bonds of polysaccharides such as starch and produces malto-oligosaccharides. Its starch saccharification applications make it an essential enzyme in the textile, food and brewing industries. Commercially available α-amylase is mostly produced from Bacillus or A...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5477289/ https://www.ncbi.nlm.nih.gov/pubmed/28629346 http://dx.doi.org/10.1186/s12896-017-0372-3 |
_version_ | 1783244761488949248 |
---|---|
author | Zhu, Hong Reynolds, L. Bruce Menassa, Rima |
author_facet | Zhu, Hong Reynolds, L. Bruce Menassa, Rima |
author_sort | Zhu, Hong |
collection | PubMed |
description | BACKGROUND: Alpha amylase hydrolyzes α-bonds of polysaccharides such as starch and produces malto-oligosaccharides. Its starch saccharification applications make it an essential enzyme in the textile, food and brewing industries. Commercially available α-amylase is mostly produced from Bacillus or Aspergillus. A hyper-thermostable and Ca (2++) independent α-amylase from Pyrococcus furiosus (PFA) expressed in E.coli forms insoluble inclusion bodies and thus is not feasible for industrial applications. RESULTS: We expressed PFA in Nicotiana tabacum and found that plant-produced PFA forms functional aggregates with an accumulation level up to 3.4 g/kg FW (fresh weight) in field conditions. The aggregates are functional without requiring refolding and therefore have potential to be applied as homogenized plant tissue without extraction or purification. PFA can also be extracted from plant tissue upon dissolution in a mild reducing buffer containing SDS. Like the enzyme produced in P. furiosus and in E. coli, plant produced PFA preserves hyper-thermophilicity and hyper-thermostability and has a long shelf life when stored in lyophilized leaf tissue. With tobacco’s large biomass and high yield, hyper-thermostable α-amylase was produced at a scale of 42 kg per hectare. CONCLUSIONS: Tobacco may be a suitable bioreactor for industrial production of active hyperthermostable alpha amylase. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12896-017-0372-3) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5477289 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-54772892017-06-23 A hyper-thermostable α-amylase from Pyrococcus furiosus accumulates in Nicotiana tabacum as functional aggregates Zhu, Hong Reynolds, L. Bruce Menassa, Rima BMC Biotechnol Research Article BACKGROUND: Alpha amylase hydrolyzes α-bonds of polysaccharides such as starch and produces malto-oligosaccharides. Its starch saccharification applications make it an essential enzyme in the textile, food and brewing industries. Commercially available α-amylase is mostly produced from Bacillus or Aspergillus. A hyper-thermostable and Ca (2++) independent α-amylase from Pyrococcus furiosus (PFA) expressed in E.coli forms insoluble inclusion bodies and thus is not feasible for industrial applications. RESULTS: We expressed PFA in Nicotiana tabacum and found that plant-produced PFA forms functional aggregates with an accumulation level up to 3.4 g/kg FW (fresh weight) in field conditions. The aggregates are functional without requiring refolding and therefore have potential to be applied as homogenized plant tissue without extraction or purification. PFA can also be extracted from plant tissue upon dissolution in a mild reducing buffer containing SDS. Like the enzyme produced in P. furiosus and in E. coli, plant produced PFA preserves hyper-thermophilicity and hyper-thermostability and has a long shelf life when stored in lyophilized leaf tissue. With tobacco’s large biomass and high yield, hyper-thermostable α-amylase was produced at a scale of 42 kg per hectare. CONCLUSIONS: Tobacco may be a suitable bioreactor for industrial production of active hyperthermostable alpha amylase. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12896-017-0372-3) contains supplementary material, which is available to authorized users. BioMed Central 2017-06-19 /pmc/articles/PMC5477289/ /pubmed/28629346 http://dx.doi.org/10.1186/s12896-017-0372-3 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Zhu, Hong Reynolds, L. Bruce Menassa, Rima A hyper-thermostable α-amylase from Pyrococcus furiosus accumulates in Nicotiana tabacum as functional aggregates |
title | A hyper-thermostable α-amylase from Pyrococcus furiosus accumulates in Nicotiana tabacum as functional aggregates |
title_full | A hyper-thermostable α-amylase from Pyrococcus furiosus accumulates in Nicotiana tabacum as functional aggregates |
title_fullStr | A hyper-thermostable α-amylase from Pyrococcus furiosus accumulates in Nicotiana tabacum as functional aggregates |
title_full_unstemmed | A hyper-thermostable α-amylase from Pyrococcus furiosus accumulates in Nicotiana tabacum as functional aggregates |
title_short | A hyper-thermostable α-amylase from Pyrococcus furiosus accumulates in Nicotiana tabacum as functional aggregates |
title_sort | hyper-thermostable α-amylase from pyrococcus furiosus accumulates in nicotiana tabacum as functional aggregates |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5477289/ https://www.ncbi.nlm.nih.gov/pubmed/28629346 http://dx.doi.org/10.1186/s12896-017-0372-3 |
work_keys_str_mv | AT zhuhong ahyperthermostableaamylasefrompyrococcusfuriosusaccumulatesinnicotianatabacumasfunctionalaggregates AT reynoldslbruce ahyperthermostableaamylasefrompyrococcusfuriosusaccumulatesinnicotianatabacumasfunctionalaggregates AT menassarima ahyperthermostableaamylasefrompyrococcusfuriosusaccumulatesinnicotianatabacumasfunctionalaggregates AT zhuhong hyperthermostableaamylasefrompyrococcusfuriosusaccumulatesinnicotianatabacumasfunctionalaggregates AT reynoldslbruce hyperthermostableaamylasefrompyrococcusfuriosusaccumulatesinnicotianatabacumasfunctionalaggregates AT menassarima hyperthermostableaamylasefrompyrococcusfuriosusaccumulatesinnicotianatabacumasfunctionalaggregates |