Cargando…
High-performance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture
It is a great challenge to substantially improve the practical performance of flexible thermoelectric modules due to the absence of air-stable n-type thermoelectric materials with high-power factor. Here an excellent flexible n-type thermoelectric film is developed, which can be conveniently and rap...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5477522/ https://www.ncbi.nlm.nih.gov/pubmed/28337987 http://dx.doi.org/10.1038/ncomms14886 |
Sumario: | It is a great challenge to substantially improve the practical performance of flexible thermoelectric modules due to the absence of air-stable n-type thermoelectric materials with high-power factor. Here an excellent flexible n-type thermoelectric film is developed, which can be conveniently and rapidly prepared based on the as-grown carbon nanotube continuous networks with high conductivity. The optimum n-type film exhibits ultrahigh power factor of ∼1,500 μW m(−1) K(−2) and outstanding stability in air without encapsulation. Inspired by the findings, we design and successfully fabricate the compact-configuration flexible TE modules, which own great advantages compared with the conventional π-type configuration modules and well integrate the superior thermoelectric properties of p-type and n-type carbon nanotube films resulting in a markedly high performance. Moreover, the research results are highly scalable and also open opportunities for the large-scale production of flexible thermoelectric modules. |
---|