Cargando…
Unbiased Bayesian inference for population Markov jump processes via random truncations
We consider continuous time Markovian processes where populations of individual agents interact stochastically according to kinetic rules. Despite the increasing prominence of such models in fields ranging from biology to smart cities, Bayesian inference for such systems remains challenging, as thes...
Autores principales: | Georgoulas, Anastasis, Hillston, Jane, Sanguinetti, Guido |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5477715/ https://www.ncbi.nlm.nih.gov/pubmed/28690370 http://dx.doi.org/10.1007/s11222-016-9667-9 |
Ejemplares similares
-
Direct statistical inference for finite Markov jump processes via the matrix exponential
por: Sherlock, Chris
Publicado: (2021) -
Scalable Bayesian Inference for Coupled Hidden Markov and Semi-Markov Models
por: Touloupou, Panayiota, et al.
Publicado: (2019) -
From Markov jump processes to spatial queues
por: Breuer, Lothar
Publicado: (2003) -
Exact and computationally efficient Bayesian inference for generalized Markov modulated Poisson processes
por: Gonçalves, Flávio B., et al.
Publicado: (2022) -
Analysis of Markov Jump Processes under Terminal Constraints
por: Backenköhler, Michael, et al.
Publicado: (2021)