Cargando…
Similarity of plant functional traits and aggregation pattern in a subtropical forest
The distribution of species and communities in relation to environmental heterogeneity is a central focus in ecology. Co‐occurrence of species with similar functional traits is an indication that communities are determined in part by environmental filters. However, few studies have been designed to...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5478052/ https://www.ncbi.nlm.nih.gov/pubmed/28649322 http://dx.doi.org/10.1002/ece3.2973 |
Sumario: | The distribution of species and communities in relation to environmental heterogeneity is a central focus in ecology. Co‐occurrence of species with similar functional traits is an indication that communities are determined in part by environmental filters. However, few studies have been designed to test how functional traits are selectively filtered by environmental conditions at local scales. Exploring the relationship between soil characteristics and plant traits is a step toward understanding the filtering hypothesis in determining plant distribution at local scale. Toward this end, we mapped all individual trees (diameter >1 cm) in a one‐ha subtropical forest of China in 2007 and 2015. We measured topographic and detailed soil properties within the field site, as well as plant leaf functional traits and demographic rates of the seven most common tree species. A second one‐ha study plot was established in 2015, to test and validate the general patterns that were drawn from first plot. We found that variation in species distribution at local scale can be explained by soil heterogeneity and plant functional traits. (From first plot). (1) Species dominant in habitats with high soil ammonium nitrogen and total phosphorus tended to have high specific leaf area (SLA) and relative growth rate (RGR). (2) Species dominant in low‐fertility habitats tended to have high leaf dry matter content (LDMC), ratio of chlorophyll a and b (ratioab), and leaf thickness (LT). The hypothesis that functional traits are selected in part by environmental filters and determine plant distribution at local scale was confirmed by the data of the first plot and a second regional site showed similar species distribution patterns. |
---|