Cargando…
Detection methods for stochastic gravitational-wave backgrounds: a unified treatment
We review detection methods that are currently in use or have been proposed to search for a stochastic background of gravitational radiation. We consider both Bayesian and frequentist searches using ground-based and space-based laser interferometers, spacecraft Doppler tracking, and pulsar timing ar...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5478100/ https://www.ncbi.nlm.nih.gov/pubmed/28690422 http://dx.doi.org/10.1007/s41114-017-0004-1 |
_version_ | 1783244895220137984 |
---|---|
author | Romano, Joseph D. Cornish, Neil. J. |
author_facet | Romano, Joseph D. Cornish, Neil. J. |
author_sort | Romano, Joseph D. |
collection | PubMed |
description | We review detection methods that are currently in use or have been proposed to search for a stochastic background of gravitational radiation. We consider both Bayesian and frequentist searches using ground-based and space-based laser interferometers, spacecraft Doppler tracking, and pulsar timing arrays; and we allow for anisotropy, non-Gaussianity, and non-standard polarization states. Our focus is on relevant data analysis issues, and not on the particular astrophysical or early Universe sources that might give rise to such backgrounds. We provide a unified treatment of these searches at the level of detector response functions, detection sensitivity curves, and, more generally, at the level of the likelihood function, since the choice of signal and noise models and prior probability distributions are actually what define the search. Pedagogical examples are given whenever possible to compare and contrast different approaches. We have tried to make the article as self-contained and comprehensive as possible, targeting graduate students and new researchers looking to enter this field. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s41114-017-0004-1) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5478100 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-54781002017-07-06 Detection methods for stochastic gravitational-wave backgrounds: a unified treatment Romano, Joseph D. Cornish, Neil. J. Living Rev Relativ Review Article We review detection methods that are currently in use or have been proposed to search for a stochastic background of gravitational radiation. We consider both Bayesian and frequentist searches using ground-based and space-based laser interferometers, spacecraft Doppler tracking, and pulsar timing arrays; and we allow for anisotropy, non-Gaussianity, and non-standard polarization states. Our focus is on relevant data analysis issues, and not on the particular astrophysical or early Universe sources that might give rise to such backgrounds. We provide a unified treatment of these searches at the level of detector response functions, detection sensitivity curves, and, more generally, at the level of the likelihood function, since the choice of signal and noise models and prior probability distributions are actually what define the search. Pedagogical examples are given whenever possible to compare and contrast different approaches. We have tried to make the article as self-contained and comprehensive as possible, targeting graduate students and new researchers looking to enter this field. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s41114-017-0004-1) contains supplementary material, which is available to authorized users. Springer International Publishing 2017-04-04 2017 /pmc/articles/PMC5478100/ /pubmed/28690422 http://dx.doi.org/10.1007/s41114-017-0004-1 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Review Article Romano, Joseph D. Cornish, Neil. J. Detection methods for stochastic gravitational-wave backgrounds: a unified treatment |
title | Detection methods for stochastic gravitational-wave backgrounds: a unified treatment |
title_full | Detection methods for stochastic gravitational-wave backgrounds: a unified treatment |
title_fullStr | Detection methods for stochastic gravitational-wave backgrounds: a unified treatment |
title_full_unstemmed | Detection methods for stochastic gravitational-wave backgrounds: a unified treatment |
title_short | Detection methods for stochastic gravitational-wave backgrounds: a unified treatment |
title_sort | detection methods for stochastic gravitational-wave backgrounds: a unified treatment |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5478100/ https://www.ncbi.nlm.nih.gov/pubmed/28690422 http://dx.doi.org/10.1007/s41114-017-0004-1 |
work_keys_str_mv | AT romanojosephd detectionmethodsforstochasticgravitationalwavebackgroundsaunifiedtreatment AT cornishneilj detectionmethodsforstochasticgravitationalwavebackgroundsaunifiedtreatment |