Cargando…

Simulation of oak early life history and interactions with disturbance via an individual-based model, SOEL

Early tree life history and demography are driven by interactions with the environment such as seed predation, herbivory, light availability, and drought. For oak (Quercus) in the eastern United States, these interactions may contribute to oak regeneration failure. Numerous studies have examined the...

Descripción completa

Detalles Bibliográficos
Autores principales: Kellner, Kenneth F., Swihart, Robert K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5478140/
https://www.ncbi.nlm.nih.gov/pubmed/28632773
http://dx.doi.org/10.1371/journal.pone.0179643
Descripción
Sumario:Early tree life history and demography are driven by interactions with the environment such as seed predation, herbivory, light availability, and drought. For oak (Quercus) in the eastern United States, these interactions may contribute to oak regeneration failure. Numerous studies have examined the impact of individual factors (like seed predation) on the oak regeneration process, but less information is available on the relative and combined impacts of multiple intrinsic and extrinsic factors on early oak life history. We developed an individual-based, spatially explicit model to Simulate Oak Early Life history (SOEL). The model connects acorn survival, acorn dispersal, germination, seedling growth, and seedling survival submodels based on empirical data with an existing gap model (JABOWA). Using SOEL, we assessed the sensitivity of several metrics of oak regeneration to different parameters associated with early oak life history. We also applied the model in three individual case studies to assess: (1) how variable acorn production interacts with timing of timber harvest; (2) the effect of shelterwood harvest-induced differences on seed predation; and (3) the consequences of interactions between drought, seedling growth and survival, and timber harvest. We found that oak regeneration metrics including percent emergence, seedling density, and sapling density were most sensitive to the amount of acorn production, acorn caching probability by scatterhoarders, and seedling growth rates. In the case studies, we found that timing harvest to follow large acorn crops can increase the density of oak regeneration in the short term following harvest, at least under some conditions. Following midstory removal, lower weevil infestation probability and lower post-dispersal acorn survival resulted in a modest decline in seedling density, but the decline did not persist to the sapling life stage class. Drought frequency had a powerful negative impact on both growth and survival for individual seedlings, which resulted in large reductions in both seedling and sapling density. The case studies presented here represent only a few examples of what could be accomplished within the SOEL modeling framework. Further studies could focus on different early life history parameters, or connect the parameter values to different predictor variables based on field data.