Cargando…

Influence of the Hole Transporting Layer on the Thermal Stability of Inverted Organic Photovoltaics Using Accelerated-Heat Lifetime Protocols

[Image: see text] [Image: see text] High power conversion efficiency (PCE) inverted organic photovoltaics (OPVs) usually use thermally evaporated MoO(3) as a hole transporting layer (HTL). Despite the high PCE values reported, stability investigations are still limited and the exact degradation mech...

Descripción completa

Detalles Bibliográficos
Autores principales: Hermerschmidt, Felix, Savva, Achilleas, Georgiou, Efthymios, Tuladhar, Sachetan M., Durrant, James R., McCulloch, Iain, Bradley, Donal D. C., Brabec, Christoph J., Nelson, Jenny, Choulis, Stelios A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5478180/
https://www.ncbi.nlm.nih.gov/pubmed/28357861
http://dx.doi.org/10.1021/acsami.7b01183
_version_ 1783244910558707712
author Hermerschmidt, Felix
Savva, Achilleas
Georgiou, Efthymios
Tuladhar, Sachetan M.
Durrant, James R.
McCulloch, Iain
Bradley, Donal D. C.
Brabec, Christoph J.
Nelson, Jenny
Choulis, Stelios A.
author_facet Hermerschmidt, Felix
Savva, Achilleas
Georgiou, Efthymios
Tuladhar, Sachetan M.
Durrant, James R.
McCulloch, Iain
Bradley, Donal D. C.
Brabec, Christoph J.
Nelson, Jenny
Choulis, Stelios A.
author_sort Hermerschmidt, Felix
collection PubMed
description [Image: see text] [Image: see text] High power conversion efficiency (PCE) inverted organic photovoltaics (OPVs) usually use thermally evaporated MoO(3) as a hole transporting layer (HTL). Despite the high PCE values reported, stability investigations are still limited and the exact degradation mechanisms of inverted OPVs using thermally evaporated MoO(3) HTL remain unclear under different environmental stress factors. In this study, we monitor the accelerated lifetime performance under the ISOS-D-2 protocol (heat conditions 65 °C) of nonencapsulated inverted OPVs based on the thiophene-based active layer materials poly(3-hexylthiophene) (P3HT), poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7), and thieno[3,2-b]thiophene-diketopyrrolopyrrole (DPPTTT) blended with [6,6]-phenyl C(71)-butyric acid methyl ester (PC[70]BM). The presented investigation of degradation mechanisms focus on optimized P3HT:PC[70]BM-based inverted OPVs. Specifically, we present a systematic study on the thermal stability of inverted P3HT:PC[70]BM OPVs using solution-processed poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and evaporated MoO(3) HTL. Using a series of measurements and reverse engineering methods, we report that the P3HT:PC[70]BM/MoO(3) interface is the main origin of failure of the P3HT:PC[70]BM-based inverted OPVs under intense heat conditions, a trend that is also observed for the other two thiophene-based polymers used in this study.
format Online
Article
Text
id pubmed-5478180
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-54781802017-06-21 Influence of the Hole Transporting Layer on the Thermal Stability of Inverted Organic Photovoltaics Using Accelerated-Heat Lifetime Protocols Hermerschmidt, Felix Savva, Achilleas Georgiou, Efthymios Tuladhar, Sachetan M. Durrant, James R. McCulloch, Iain Bradley, Donal D. C. Brabec, Christoph J. Nelson, Jenny Choulis, Stelios A. ACS Appl Mater Interfaces [Image: see text] [Image: see text] High power conversion efficiency (PCE) inverted organic photovoltaics (OPVs) usually use thermally evaporated MoO(3) as a hole transporting layer (HTL). Despite the high PCE values reported, stability investigations are still limited and the exact degradation mechanisms of inverted OPVs using thermally evaporated MoO(3) HTL remain unclear under different environmental stress factors. In this study, we monitor the accelerated lifetime performance under the ISOS-D-2 protocol (heat conditions 65 °C) of nonencapsulated inverted OPVs based on the thiophene-based active layer materials poly(3-hexylthiophene) (P3HT), poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7), and thieno[3,2-b]thiophene-diketopyrrolopyrrole (DPPTTT) blended with [6,6]-phenyl C(71)-butyric acid methyl ester (PC[70]BM). The presented investigation of degradation mechanisms focus on optimized P3HT:PC[70]BM-based inverted OPVs. Specifically, we present a systematic study on the thermal stability of inverted P3HT:PC[70]BM OPVs using solution-processed poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and evaporated MoO(3) HTL. Using a series of measurements and reverse engineering methods, we report that the P3HT:PC[70]BM/MoO(3) interface is the main origin of failure of the P3HT:PC[70]BM-based inverted OPVs under intense heat conditions, a trend that is also observed for the other two thiophene-based polymers used in this study. American Chemical Society 2017-03-30 2017-04-26 /pmc/articles/PMC5478180/ /pubmed/28357861 http://dx.doi.org/10.1021/acsami.7b01183 Text en Copyright © 2017 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Hermerschmidt, Felix
Savva, Achilleas
Georgiou, Efthymios
Tuladhar, Sachetan M.
Durrant, James R.
McCulloch, Iain
Bradley, Donal D. C.
Brabec, Christoph J.
Nelson, Jenny
Choulis, Stelios A.
Influence of the Hole Transporting Layer on the Thermal Stability of Inverted Organic Photovoltaics Using Accelerated-Heat Lifetime Protocols
title Influence of the Hole Transporting Layer on the Thermal Stability of Inverted Organic Photovoltaics Using Accelerated-Heat Lifetime Protocols
title_full Influence of the Hole Transporting Layer on the Thermal Stability of Inverted Organic Photovoltaics Using Accelerated-Heat Lifetime Protocols
title_fullStr Influence of the Hole Transporting Layer on the Thermal Stability of Inverted Organic Photovoltaics Using Accelerated-Heat Lifetime Protocols
title_full_unstemmed Influence of the Hole Transporting Layer on the Thermal Stability of Inverted Organic Photovoltaics Using Accelerated-Heat Lifetime Protocols
title_short Influence of the Hole Transporting Layer on the Thermal Stability of Inverted Organic Photovoltaics Using Accelerated-Heat Lifetime Protocols
title_sort influence of the hole transporting layer on the thermal stability of inverted organic photovoltaics using accelerated-heat lifetime protocols
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5478180/
https://www.ncbi.nlm.nih.gov/pubmed/28357861
http://dx.doi.org/10.1021/acsami.7b01183
work_keys_str_mv AT hermerschmidtfelix influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols
AT savvaachilleas influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols
AT georgiouefthymios influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols
AT tuladharsachetanm influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols
AT durrantjamesr influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols
AT mccullochiain influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols
AT bradleydonaldc influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols
AT brabecchristophj influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols
AT nelsonjenny influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols
AT choulissteliosa influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols