Cargando…
Local Somatodendritic Translation and Hyperphosphorylation of Tau Protein Triggered by AMPA and NMDA Receptor Stimulation
Tau is a major component of the neurofibrillary tangles (NFT) that represent a pathological hallmark of Alzheimer's disease (AD). Although generally considered an axonal protein, Tau is found in the somato-dendritic compartment of degenerating neurons and this redistribution is thought to be a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5478209/ https://www.ncbi.nlm.nih.gov/pubmed/28566250 http://dx.doi.org/10.1016/j.ebiom.2017.05.012 |
Sumario: | Tau is a major component of the neurofibrillary tangles (NFT) that represent a pathological hallmark of Alzheimer's disease (AD). Although generally considered an axonal protein, Tau is found in the somato-dendritic compartment of degenerating neurons and this redistribution is thought to be a trigger of neurodegeneration in AD. Here, we show the presence of tau mRNA in a dendritic ribonucleoprotein (RNP) complex that includes Ca2(+)-calmodulin dependent protein kinase (CaMK)IIα mRNA and that is translated locally in response to glutamate stimulation. Further, we show that Tau mRNA is a component of mRNP granules that contain RNA-binding proteins, and that it interacts with Myosin Va, a postsynaptic motor protein; these findings suggest that tau mRNA is transported into dendritic spines. We also report that tau mRNA localized in the somato-dendritic component of primary hippocampal cells and that a sub-toxic concentration of glutamate enhances local translation and hyperphosphorylation of tau, effects that are blocked by the gluatamatergic antagonists MK801 and NBQX. These data thus demonstrate that alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and N-methyl-d-aspartate (NMDA) stimulation redistributes tau to the somato-dendritic region of neurons where it may trigger neurodegeneration. |
---|