Cargando…

CRISPR/Cas9 – Mediated Precise Targeted Integration In Vivo Using a Double Cut Donor with Short Homology Arms

Precisely targeted genome editing is highly desired for clinical applications. However, the widely used homology-directed repair (HDR)-based genome editing strategies remain inefficient for certain in vivo applications. We here demonstrate a microhomology-mediated end-joining (MMEJ)-based strategy f...

Descripción completa

Detalles Bibliográficos
Autores principales: Yao, Xuan, Wang, Xing, Liu, Junlai, Hu, Xinde, Shi, Linyu, Shen, Xiaowen, Ying, Wenqin, Sun, Xinyao, Wang, Xin, Huang, Pengyu, Yang, Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5478232/
https://www.ncbi.nlm.nih.gov/pubmed/28527830
http://dx.doi.org/10.1016/j.ebiom.2017.05.015
Descripción
Sumario:Precisely targeted genome editing is highly desired for clinical applications. However, the widely used homology-directed repair (HDR)-based genome editing strategies remain inefficient for certain in vivo applications. We here demonstrate a microhomology-mediated end-joining (MMEJ)-based strategy for precisely targeted gene integration in transfected neurons and hepatocytes in vivo with efficiencies up to 20%, much higher (up to 10 fold) than HDR-based strategy in adult mouse tissues. As a proof of concept of its therapeutic potential, we demonstrate the efficacy of MMEJ-based strategy in correction of Fah mutation and rescue of Fah(−/−) liver failure mice, offering an efficient approach for precisely targeted gene therapies.