Cargando…

The Microbiome of Infants Recruited to a Randomised Placebo-controlled Probiotic Trial (PiPS Trial)

The microbial dysbiosis associated with necrotizing enterocolitis (NEC) in preterm infants suggests that early exposure to probiotics may decrease and antibiotics may increase NEC risk. However, administration of Bifidobacterium breve strain BBG-001 to preterm infants did not affect NEC incidence in...

Descripción completa

Detalles Bibliográficos
Autores principales: Millar, Michael, Seale, Jo, Greenland, Melanie, Hardy, Pollyanna, Juszczak, Edmund, Wilks, Mark, Panton, Nicola, Costeloe, Kate, Wade, William G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5478240/
https://www.ncbi.nlm.nih.gov/pubmed/28571671
http://dx.doi.org/10.1016/j.ebiom.2017.05.019
Descripción
Sumario:The microbial dysbiosis associated with necrotizing enterocolitis (NEC) in preterm infants suggests that early exposure to probiotics may decrease and antibiotics may increase NEC risk. However, administration of Bifidobacterium breve strain BBG-001 to preterm infants did not affect NEC incidence in a multicenter randomised controlled phase 3 trial (PiPS trial). Using a subset of these subjects we compared the fecal microbiome of probiotic and placebo groups and assessed the impact of early antibiotic treatment. Extracted DNA from 103 fecal samples collected at 36 weeks post-menstrual age underwent PCR amplification of a fragment of the 16S rRNA gene. Heatmaps were constructed showing the proportions of sequences from bacterial families present at > 1% of the community. Stepwise logistic regression assessed the association between early antibiotic exposure and microbiome group. There was no difference in the microbial richness and diversity of the microbiome of preterm infants following treatment with probiotic or a placebo. Conversely, early antimicrobial exposure was associated with different patterns of colonisation, specifically a relative abundance of Proteobacteria. These findings highlight that the potential influence of probiotics on the microbiome of preterm infants remains unclear whereas the modulatory effect of antibiotic exposure on microbial colonisation requires further research.