Cargando…

Clinical application of concentrated bone marrow aspirate in orthopaedics: A systematic review

AIM: To examine the evidence behind the use of concentrated bone marrow aspirate (cBMA) in cartilage, bone, and tendon repair; establish proof of concept for the use of cBMA in these biologic environments; and provide the level and quality of evidence substantiating the use of cBMA in the clinical s...

Descripción completa

Detalles Bibliográficos
Autores principales: Gianakos, Arianna L, Sun, Li, Patel, Jay N, Adams, Donald M, Liporace, Frank A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Baishideng Publishing Group Inc 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5478493/
https://www.ncbi.nlm.nih.gov/pubmed/28660142
http://dx.doi.org/10.5312/wjo.v8.i6.491
Descripción
Sumario:AIM: To examine the evidence behind the use of concentrated bone marrow aspirate (cBMA) in cartilage, bone, and tendon repair; establish proof of concept for the use of cBMA in these biologic environments; and provide the level and quality of evidence substantiating the use of cBMA in the clinical setting. METHODS: We conducted a systematic review according to PRISMA guidelines. EMBASE, MEDLINE, and Web of Knowledge databases were screened for the use of cBMA in the repair of cartilage, bone, and tendon repair. We extracted data on tissue type, cBMA preparation, cBMA concentration, study methods, outcomes, and level of evidence and reported the results in tables and text. RESULTS: A total of 36 studies met inclusion/exclusion criteria and were included in this review. Thirty-one of 36 (86%) studies reported the method of centrifugation and preparation of cBMA with 15 (42%) studies reporting either a cell concentration or an increase from baseline. Variation of cBMA application was seen amongst the studies evaluated. Twenty-one of 36 (58%) were level of evidence IV, 12/36 (33%) were level of evidence III, and 3/36 (8%) were level of evidence II. Studies evaluated full thickness chondral lesions (7 studies), osteochondral lesions (10 studies), osteoarthritis (5 studies), nonunion or fracture (9 studies), or tendon injuries (5 studies). Significant clinical improvement with the presence of hyaline-like values and lower incidence of fibrocartilage on T2 mapping was found in patients receiving cBMA in the treatment of cartilaginous lesions. Bone consolidation and time to bone union was improved in patients receiving cBMA. Enhanced healing rates, improved quality of the repair surface on ultrasound and magnetic resonance imaging, and a decreased risk of re-rupture was demonstrated in patients receiving cBMA as an adjunctive treatment in tendon repair. CONCLUSION: The current literature demonstrates the potential benefits of utilizing cBMA for the repair of cartilaginous lesions, bony defects, and tendon injuries in the clinical setting. This study also demonstrates discrepancies between the literature with regards to various methods of centrifugation, variable cell count concentrations, and lack of standardized outcome measures. Future studies should attempt to examine the integral factors necessary for tissue regeneration and renewal including stem cells, growth factors and a biologic scaffold.