Cargando…
Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines
An ongoing challenge in neuromorphic computing is to devise general and computationally efficient models of inference and learning which are compatible with the spatial and temporal constraints of the brain. One increasingly popular and successful approach is to take inspiration from inference and l...
Autores principales: | Neftci, Emre O., Augustine, Charles, Paul, Somnath, Detorakis, Georgios |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5478701/ https://www.ncbi.nlm.nih.gov/pubmed/28680387 http://dx.doi.org/10.3389/fnins.2017.00324 |
Ejemplares similares
-
Event-driven contrastive divergence for spiking neuromorphic systems
por: Neftci, Emre, et al.
Publicado: (2014) -
Data and Power Efficient Intelligence with Neuromorphic Learning Machines
por: Neftci, Emre O.
Publicado: (2018) -
Neural and Synaptic Array Transceiver: A Brain-Inspired Computing Framework for Embedded Learning
por: Detorakis, Georgios, et al.
Publicado: (2018) -
Memory-Efficient Synaptic Connectivity for Spike-Timing- Dependent Plasticity
por: Pedroni, Bruno U., et al.
Publicado: (2019) -
PyNCS: a microkernel for high-level definition and configuration of neuromorphic electronic systems
por: Stefanini, Fabio, et al.
Publicado: (2014)