Cargando…

Tuberculosis control, and the where and why of artificial intelligence

Countries aiming to reduce their tuberculosis (TB) burden by 2035 to the levels envisaged by the World Health Organization End TB Strategy need to innovate, with approaches such as digital health (electronic and mobile health) in support of patient care, surveillance, programme management, training...

Descripción completa

Detalles Bibliográficos
Autores principales: Doshi, Riddhi, Falzon, Dennis, Thomas, Bruce V., Temesgen, Zelalem, Sadasivan, Lal, Migliori, Giovanni Battista, Raviglione, Mario
Formato: Online Artículo Texto
Lenguaje:English
Publicado: European Respiratory Society 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5478795/
https://www.ncbi.nlm.nih.gov/pubmed/28656130
http://dx.doi.org/10.1183/23120541.00056-2017
Descripción
Sumario:Countries aiming to reduce their tuberculosis (TB) burden by 2035 to the levels envisaged by the World Health Organization End TB Strategy need to innovate, with approaches such as digital health (electronic and mobile health) in support of patient care, surveillance, programme management, training and communication. Alongside the large-scale roll-out required for such interventions to make a significant impact, products must stay abreast of advancing technology over time. The integration of artificial intelligence into new software promises to make processes more effective and efficient, endowing them with a potential hitherto unimaginable. Users can benefit from artificial intelligence-enabled pattern recognition software for tasks ranging from reading radiographs to adverse event monitoring, sifting through vast datasets to personalise a patient's care plan or to customise training materials. Many experts forecast the imminent transformation of the delivery of healthcare services. We discuss how artificial intelligence and machine learning could revolutionise the management of TB.