Cargando…

Large scale hierarchical clustering of protein sequences

BACKGROUND: Searching a biological sequence database with a query sequence looking for homologues has become a routine operation in computational biology. In spite of the high degree of sophistication of currently available search routines it is still virtually impossible to identify quickly and cle...

Descripción completa

Detalles Bibliográficos
Autores principales: Krause, Antje, Stoye, Jens, Vingron, Martin
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC547898/
https://www.ncbi.nlm.nih.gov/pubmed/15663796
http://dx.doi.org/10.1186/1471-2105-6-15
Descripción
Sumario:BACKGROUND: Searching a biological sequence database with a query sequence looking for homologues has become a routine operation in computational biology. In spite of the high degree of sophistication of currently available search routines it is still virtually impossible to identify quickly and clearly a group of sequences that a given query sequence belongs to. RESULTS: We report on our developments in grouping all known protein sequences hierarchically into superfamily and family clusters. Our graph-based algorithms take into account the topology of the sequence space induced by the data itself to construct a biologically meaningful partitioning. We have applied our clustering procedures to a non-redundant set of about 1,000,000 sequences resulting in a hierarchical clustering which is being made available for querying and browsing at . CONCLUSIONS: Comparisons with other widely used clustering methods on various data sets show the abilities and strengths of our clustering methods in producing a biologically meaningful grouping of protein sequences.