Cargando…
Does sperm quality and DNA integrity differ in cryopreserved semen samples from young, adult, and aged Nellore bulls?
BACKGROUND: In humans, it is now well documented that rising paternal age is correlated with decreased sperm DNA integrity and embryonic developmental failures. On the other side of the coin, it is also reported that very young fathers such as teenagers carry an increased risk of adverse birth outco...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5479005/ https://www.ncbi.nlm.nih.gov/pubmed/28649382 http://dx.doi.org/10.1186/s12610-017-0056-9 |
Sumario: | BACKGROUND: In humans, it is now well documented that rising paternal age is correlated with decreased sperm DNA integrity and embryonic developmental failures. On the other side of the coin, it is also reported that very young fathers such as teenagers carry an increased risk of adverse birth outcomes. These observations suggest that, at least in humans, there is an age window for optimal sperm DNA integrity. In bovine, little is known about sperm DNA quality in young bulls and how it evolves with age. This study aimed to fill in this gap as it may be of importance for the bovine industry to know when exactly a bull is an optimal performer for reproductive programs. METHODS: Forty Nellore bulls were divided into three age groups: 1.8 to 2 years – young bulls; 3.5 to 7 years – adult bulls; and 8 to 14.3 years – aged bulls. Three ejaculates were collected from each bull, cryopreserved and evaluated for various parameters including: computer-assisted sperm analysis (CASA), plasma membrane and acrosome integrity, mitochondrial potential, sperm nuclear protamination, DNA oxidative damage, and Sperm Chromatin Structure Assay (SCSA). RESULTS: We report here that young bulls presented superior values for motility, plasma and acrosomal membrane integrity, and high mitochondrial potential. However, they also presented higher values for sperm morphological abnormalities compared to adult and aged animal groups (p < 0.05). In addition, young bulls exhibited more defective protamination than older animals did. The oldest bulls showed more nuclear oxidative damage than the younger groups of bulls while both the young and aged groups were found more susceptible to DNA denaturation as revealed with the SCSA test (p < 0.05). CONCLUSION: These results indicate that young bulls spermatozoa best survived the freezing procedure, followed by adult and aged bulls. However, young and aged bulls were found to be more susceptible to DNA damage, respectively caused by protamine deficiency and oxidation. Therefore, although young bulls have correct semen parameters according to classical evaluation, our results indicate that they may show some structural nuclear immaturity. |
---|