Cargando…
Handling hybrid and missing data in constraint-based causal discovery to study the etiology of ADHD
Causal discovery is an increasingly important method for data analysis in the field of medical research. In this paper, we consider two challenges in causal discovery that occur very often when working with medical data: a mixture of discrete and continuous variables and a substantial amount of miss...
Autores principales: | Sokolova, Elena, von Rhein, Daniel, Naaijen, Jilly, Groot, Perry, Claassen, Tom, Buitelaar, Jan, Heskes, Tom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5479362/ https://www.ncbi.nlm.nih.gov/pubmed/28691055 http://dx.doi.org/10.1007/s41060-016-0034-x |
Ejemplares similares
-
A Causal and Mediation Analysis of the Comorbidity Between Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD)
por: Sokolova, Elena, et al.
Publicado: (2017) -
Statistical Evidence Suggests that Inattention Drives Hyperactivity/Impulsivity in Attention Deficit-Hyperactivity Disorder
por: Sokolova, Elena, et al.
Publicado: (2016) -
Spectral Ranking of Causal Influence in Complex Systems
por: Zalmijn, Errol, et al.
Publicado: (2021) -
Constraint-based causal discovery with mixed data
por: Tsagris, Michail, et al.
Publicado: (2018) -
Inferring the direction of a causal link and estimating its effect
via a Bayesian Mendelian randomization approach
por: Bucur, Ioan Gabriel, et al.
Publicado: (2019)