Cargando…

Robust nonparametric quantification of clustering density of molecules in single-molecule localization microscopy

We report a robust nonparametric descriptor, J′(r), for quantifying the density of clustering molecules in single-molecule localization microscopy. J′(r), based on nearest neighbor distribution functions, does not require any parameter as an input for analyzing point patterns. We show that J′(r) dis...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Shenghang, Park, Seongjin, Challapalli, Sai Divya, Fei, Jingyi, Wang, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5479598/
https://www.ncbi.nlm.nih.gov/pubmed/28636661
http://dx.doi.org/10.1371/journal.pone.0179975
Descripción
Sumario:We report a robust nonparametric descriptor, J′(r), for quantifying the density of clustering molecules in single-molecule localization microscopy. J′(r), based on nearest neighbor distribution functions, does not require any parameter as an input for analyzing point patterns. We show that J′(r) displays a valley shape in the presence of clusters of molecules, and the characteristics of the valley reliably report the clustering features in the data. Most importantly, the position of the J′(r) valley ([Image: see text] ) depends exclusively on the density of clustering molecules (ρ(c)). Therefore, it is ideal for direct estimation of the clustering density of molecules in single-molecule localization microscopy. As an example, this descriptor was applied to estimate the clustering density of ptsG mRNA in E. coli bacteria.