Cargando…
A state of delirium: Deciphering the effect of inflammation on tau pathology in Alzheimer's disease
Alzheimer's disease (AD), the predominant form of dementia, is highly correlated with the abnormal hyperphosphorylation and aggregation of tau. Immune responses are key drivers of AD and how they contribute to tau pathology in human disease remains largely unknown. This review summarises curren...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5479936/ https://www.ncbi.nlm.nih.gov/pubmed/27979768 http://dx.doi.org/10.1016/j.exger.2016.12.006 |
_version_ | 1783245196954173440 |
---|---|
author | Barron, Matthew Gartlon, Jane Dawson, Lee A. Atkinson, Peter J. Pardon, Marie-Christine |
author_facet | Barron, Matthew Gartlon, Jane Dawson, Lee A. Atkinson, Peter J. Pardon, Marie-Christine |
author_sort | Barron, Matthew |
collection | PubMed |
description | Alzheimer's disease (AD), the predominant form of dementia, is highly correlated with the abnormal hyperphosphorylation and aggregation of tau. Immune responses are key drivers of AD and how they contribute to tau pathology in human disease remains largely unknown. This review summarises current knowledge on the association between inflammatory processes and tau pathology. While, preclinical evidence suggests that inflammation can indeed induce tau hyperphosphorylation at both pre- and post-tangles epitopes, a better understanding of whether this develops into advanced pathological features such as neurofibrillary tangles is needed. Microglial cells, the immune phagocytes in the central nervous system, appear to play a key role in regulating tau pathology, but the underlying mechanisms are not fully understood. Their activation can be detrimental via the secretion of pro-inflammatory mediators, particularly interleukin-1β, but also potentially beneficial through phagocytosis of extracellular toxic tau oligomers. Nevertheless, anti-inflammatory treatments in animal models were found protective, but whether or not they affect microglial phagocytosis of tau species is unknown. However, one major challenge to our understanding of the role of inflammation in the progression of tau pathology is the preclinical models used to address this question. They mostly rely on the use of septic doses of lipopolysaccharide that do not reflect the inflammatory conditions experienced AD patients, questioning whether the impact of inflammation on tau pathology in these models is dose-dependent and relevant to the human disease. The use of more translational models of inflammation corroborated with verification in clinical investigations are necessary to progress our understanding of the interplay between inflammation and tau pathology. |
format | Online Article Text |
id | pubmed-5479936 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Elsevier Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-54799362017-08-01 A state of delirium: Deciphering the effect of inflammation on tau pathology in Alzheimer's disease Barron, Matthew Gartlon, Jane Dawson, Lee A. Atkinson, Peter J. Pardon, Marie-Christine Exp Gerontol Article Alzheimer's disease (AD), the predominant form of dementia, is highly correlated with the abnormal hyperphosphorylation and aggregation of tau. Immune responses are key drivers of AD and how they contribute to tau pathology in human disease remains largely unknown. This review summarises current knowledge on the association between inflammatory processes and tau pathology. While, preclinical evidence suggests that inflammation can indeed induce tau hyperphosphorylation at both pre- and post-tangles epitopes, a better understanding of whether this develops into advanced pathological features such as neurofibrillary tangles is needed. Microglial cells, the immune phagocytes in the central nervous system, appear to play a key role in regulating tau pathology, but the underlying mechanisms are not fully understood. Their activation can be detrimental via the secretion of pro-inflammatory mediators, particularly interleukin-1β, but also potentially beneficial through phagocytosis of extracellular toxic tau oligomers. Nevertheless, anti-inflammatory treatments in animal models were found protective, but whether or not they affect microglial phagocytosis of tau species is unknown. However, one major challenge to our understanding of the role of inflammation in the progression of tau pathology is the preclinical models used to address this question. They mostly rely on the use of septic doses of lipopolysaccharide that do not reflect the inflammatory conditions experienced AD patients, questioning whether the impact of inflammation on tau pathology in these models is dose-dependent and relevant to the human disease. The use of more translational models of inflammation corroborated with verification in clinical investigations are necessary to progress our understanding of the interplay between inflammation and tau pathology. Elsevier Science 2017-08 /pmc/articles/PMC5479936/ /pubmed/27979768 http://dx.doi.org/10.1016/j.exger.2016.12.006 Text en © 2016 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Barron, Matthew Gartlon, Jane Dawson, Lee A. Atkinson, Peter J. Pardon, Marie-Christine A state of delirium: Deciphering the effect of inflammation on tau pathology in Alzheimer's disease |
title | A state of delirium: Deciphering the effect of inflammation on tau pathology in Alzheimer's disease |
title_full | A state of delirium: Deciphering the effect of inflammation on tau pathology in Alzheimer's disease |
title_fullStr | A state of delirium: Deciphering the effect of inflammation on tau pathology in Alzheimer's disease |
title_full_unstemmed | A state of delirium: Deciphering the effect of inflammation on tau pathology in Alzheimer's disease |
title_short | A state of delirium: Deciphering the effect of inflammation on tau pathology in Alzheimer's disease |
title_sort | state of delirium: deciphering the effect of inflammation on tau pathology in alzheimer's disease |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5479936/ https://www.ncbi.nlm.nih.gov/pubmed/27979768 http://dx.doi.org/10.1016/j.exger.2016.12.006 |
work_keys_str_mv | AT barronmatthew astateofdeliriumdecipheringtheeffectofinflammationontaupathologyinalzheimersdisease AT gartlonjane astateofdeliriumdecipheringtheeffectofinflammationontaupathologyinalzheimersdisease AT dawsonleea astateofdeliriumdecipheringtheeffectofinflammationontaupathologyinalzheimersdisease AT atkinsonpeterj astateofdeliriumdecipheringtheeffectofinflammationontaupathologyinalzheimersdisease AT pardonmariechristine astateofdeliriumdecipheringtheeffectofinflammationontaupathologyinalzheimersdisease AT barronmatthew stateofdeliriumdecipheringtheeffectofinflammationontaupathologyinalzheimersdisease AT gartlonjane stateofdeliriumdecipheringtheeffectofinflammationontaupathologyinalzheimersdisease AT dawsonleea stateofdeliriumdecipheringtheeffectofinflammationontaupathologyinalzheimersdisease AT atkinsonpeterj stateofdeliriumdecipheringtheeffectofinflammationontaupathologyinalzheimersdisease AT pardonmariechristine stateofdeliriumdecipheringtheeffectofinflammationontaupathologyinalzheimersdisease |